Pushdown Automata & 301

where|$ is shown using the table. The corresponding transition diagram or the state diagram is

also shown:
8(qo, €. Zoy = (qi, SZy)
. S(qh a, S) = (q|, SB)
8qra.8) = (@q,B)
8(q1,b.B) . = (q.€)
= (qr Zo)

ES(QI €. Zy) A

The eéluivalent CFG to generate the language is:

S — aSa|aa
S — bSb|bb

The'coiresponding grammar which is in GNF is

'S — aSA|aA
S — bSB|bB
A - a

B —- b

The e?hivalent transitions for the above productions are:

ot

8qi.a,S) = {(@,SA)@,A)}
5(‘11. b7 S) = {(qlv SB)’ (ql’ B) }
8aqi,a,A) = (q,¥©)

= (qh 8)

8(ql' b’ B)

In sec:iion 7.7, we have seen that the transition

8qo. €. Z) = (Qi.SZ)

is used to push S on to the stack initially and the last transition

6(q| . &, Zo) = (qu ZO)

(a,SVB
 asysB{|®Bye

| "’@(azo)/szo

Exam’ﬂe 7.21: Obtain a the PDA to accept the language L = {M :|wj 21forwe (a+b)*} |



302 B Finite Automata and Formal Languages
" is used to move to the final state. So, the PDA is given by

M= ({qo, qi, gr}, {a.b}, {S.A.B.Z}, 8, qo, Zo, q0) (
where 8 is shown below: ;

8(‘]07 €, ZO) = (qh SZ)) ’ . .
(@ SA). (@1 A) )

5((117,3, S) =

' 5((1|.b, S) = {(qi, SB).(q;. B) }
g, a,A) = (q1,€)

- 8(qi.b,B) = (qi,¢€)
5(‘11 » & ZO) = (qfv ZO)

79  PDA to CFG

As we have converted CFG to PDA, we'can convert a given PDA to CFG. The general prmedure
for this conversion is shown below:

1. The input symbols of PDA will be ihe terminals of CFG

- 2. If the PDA moves from state to g; to state q; on consuming the input a € X when Zt:‘is the
top of the stack, then the non-terminals of CFG are the triplets of the form (g:Zg;) *

3. If qois the start state and gy is the final state then (qoZqy) is the start symbol of CFG.
4. The productions of CFG can be obtained from the transitions of PDA as shown belc Wi
a. For each transition of the form ’ . ;

3(q;, a, Z) = (q;, AB) ' ‘ |

introduce the producﬁons of the form |

(9iZqx) — a (q;Aq)(qBqy)

where qiand q; will take all possible values from Q

b. For each transition of the form |
’ S(Qi, a, Z) ) = (q]’ 8) N ' “

introduce the production

(9iZqj)) — a




Pushdown Automata 2 303

Notet Using this procedure, we may introduce lot of useless symbols, which in any way can be
eliminated.

Example 7.22: Obtain a CFG for the PDA shown below:

qo.a,Z) = (qu.AZ)
3(qo.a.A) = (qo. A)

! : S(QO.. b, A) = (q:- €)

X qe.Z) = (q8)

Note;’l"o obtain a CFG from the PDA, all the transitions should be of the form
g 2, Z) (g5 AB)

or

&g, a,Z)

In thé given transitions except the second transition, all transitions are in
the rQ(]mred form. So, let us take the second transition :

1 . ’ 8((]0, a, A) = (q(h A) A
and i:nvert it into the required form. This can be achieved if we have understood what the

(q;. €)

transition indicates. It is clear from the transition that when input symbol a is encountered and top
of the stack is A the PDA remains in state qo and contents of the stack are not altered. This can
be mterpreted as delete A from the stack and insert A onto the stack.

So, dnce A is deleted from the stack we enter into new state qs. But, in state q; without
consuming any input we add A on to the stack. The corresponding transitions are:

8(‘10 a, A) = (Q3, E)
5((]3, €, Z) = (qO, AZ)

So, tl‘p given PDA can be written using the following transitions

8(‘10, a, Z) = (qO’ AZ)
8(q0; a, A) = (‘b, 8)
g e,2) = (qn,AZ)
8qe.b,A) = (qi,9)
8q,8,2) =

(qZ’ 8)

Now,ithe transitions

9(qo.a, A)

= (q3a 8)
8(q0, b’ A) = (ql’ E) -
8(ql’ E, Z) = (qu E)

can be converted into productions as shown below:

H



304 B Finite Automata and Formal Languages

For 8 of the form Resulting Productions
8(qi 3, Z2) = (q;, &) (qZq)—a
~ 8(qo.a, A) =(qx €) (qoAg:) — a
8(qe, b, A) = (q,. &) (QoAq)) b
8(q1, €, Z)=(g2, €) (91Zq:) > €

Now, the transitions

(qo- AZ) o : '
(qO* AZ) )

3(qo. a, Z)
‘ 5(qs. &, 2)

can be converted into productibns using rule 4.a as shown below:

For & of the form - Resulting Productions
8(q;,a,2).= (q;, AB) (qiZgx) — a (q;Aq)(qBqy)
3(qo, a, Z) = (qo, AZ) | (q0Zqo) — a (qoAqo)(qoZqo) | 2 (QoAq:)(q:1Zqo) |
2 (q0Aq2)(q:Zq0) | a (qoAg3)(q3Zq0)
(90Zq1) — a (QAGe)(qoZq1) |2 (qeAqI)(@iZqy) |
a (qoAq2)(92Zq,) | a (qoAq3)(q:Zqy)
(90Zq2) —a (qoAqo)(qoZ4q2) | a (qeAqINqiZqy) |
a (qoAq2)(q-Zq>) | a (qoAqQ3)X(q:Z42)
(90Zq3) — a (qoAQo)(QeZqs) | a (QAG1)(q1Z4q:3) |
a (90Ag2)(q2Zq3) | a (40Ag3)(q3Zq3)
3(qs, € Z) = (qo. AZ) | (q3Zq0) — (90AG)(GoZq0) | (qoAG:Xq1ZAq0) |
(q0AQ2X(q2Zq0) | (90AQ3)(q3Zqo)
(93Zq;) = (qoAqoXqoZq,) | (90Aq:)(q1Zq)) |
(90Aq2)(q:Zqy) | (90AQ3)(q3Zq1) :
(9:Z92) = (qoAGo)(QZ4) | (RAd(@iZay) | "
(90AqQ2)(q2Zq2) | (q0Aq3)(q3Zq2) ,
(@5Z93) — (90AQ)Q0Za3) | (0AQ1)(QiZay) | |
(90AQ2)(9:Zq3) | (90Ag3)(q:Z43) ;

The start symbol of the grammar will be qoZq>.

Example 7.23: Obtain a CFG that generates the Ianguage accepted by PDAM = ( {q0,q1}, {a; 1:}, {A,
Z}, 8, Qo, Z, {1}), with the transitions ,

8(q0, a, Z) = (qu AZ)

S(qob, A) = (qo, AA)

8((]0- a, A) = (ql» E)
Now, fhe transition

dqoa,A) = (qi¥)




Pushdown Automata & 305

can be converted into production as shown below:

" For & of the form Resulting Productions
89.2a,2)=(qp8) . (9Zg) —a
&(qo.a, A) =(qi, €) (oAq1) — 2

Nowj the transitions

(qo. AZ)
(qo. AA)

8(qo, 2, Z)
8F(Clo. b, A)

can Be converted into productions using rule 4.a as shown below:

.. For § of the form Resulting Productions -
8(g:.2,Z) = (g, AB) ' (9Zqi) — a (4iAq)(qBg)
8(8, 2, Z) = (qo, AZ) | (90Z40) —> 2 (40AG0)N0Z40) | 2 (90A41)(Q1Z0)
L (90Zq1) — a (9oAqo)(goZq:) | a (qoAq1X(q1Z4q1)
5(go, b, A) = (qo,AA) | (qoZqo) — b(qoAqo)(qoAdo) | b(QoAG1)(qi1AGo)
: (90Zq1) = b(qoAgQo)(qeAqy) | b(quql)(qlAqn)

The start symbol of the grammar will be goZq;.

Exefcises:

8 What are the demerits of regular languageé when compared to context free languages?
2. Whatare the demérits of DFA (or NFA) when f:ompared with PDA?

8. Why FAs are less powerful than the PDAs?

4. What is the difference between NFA and PDA?

5. What is a PDA? Explain with an example. |

6. What does each of the following transitions represent?
a. O(p,a, Z)=(q,aZ)

p.a,.Z2)=(q, €)
- 8(p,a,2)=(q, 1)

3(p, &, Z2)=(q.1)

3(p. €. €) =(q.2)

3p.€.Z)=(q,®)

=0 a0

»

7. How the transition / move of a PDA defined?



306 E Finite Automata and Formal Languages

8. What is an instantaneous deécription? Explain with respect to PDA. !

9. When a language is accepted by a final state and when a language is accepted by an
empty stack? ?

10 Obtain a PDA to accept the language L(M) = {waRI we (a + b)*} where WX is reveres
of W. Show the sequence of moves made by the PDA for the strings aabCbaa, aabChab.

11. Obtain a PDA to accept the language L = {a""|n 2 1} by a final state.

12. Obtain a PDA to accept the language L(M) = {w l w € (a+b)* and n,(w) = ny(w) i.e.
‘number of a’s in string w should be equal to number of b’s in w. '

13. Obtain a PDA toaccept a string of balanced parentheses. The parentheses to be
* considered are (, ), [, ], { and }. ‘

14. Obtain a PDA to abcept the language L = {w |we _ (a, b)* and ny(w) > ny(w)}
15. Obtain a PDA to accept the language L = {a"b™ In>1}
16. Obtain a PDA to accept the language L = {ww" | w € (a + b)*}

17. When the PDA is deterministic and when it is called non-determinstic?

18, Is the PDA to accept the language L(M) = {waR| we (a + b)*} is deterministic?

i

19. Is the PDA corresponding to the language l ' ‘ i
L= {a"b"] n21} by a final state is deterministic? '

20. Is the PDA to accept the language ‘
LM) = {w l w € (a+b)* and n,(w) = ny(w) is deterministic?

|

|

| |

- 21. Is the PDA to accept the language consisting of balanced parentheses is détenninistié?

22. Is the PDA to accept the language
L ={w|w € (a, b)* and n,(w) > n,(w)} is deterministic?

23. Is the PDA to accept the language
- L={a"b"|n2 1} is deterministic?

24T the PDA to accept the language ‘
L = {ww®|w € (a'+ b)*} is deterministic?

25. What is the procedure to convert a CFG to PDA?




.

26.

ps.

3,

Pushdown Automata & 307

For the grammar

S — aABC
A — aBja
B — bAp
C 5 a

Obtain the corresponding PDA
For the grammar

aABB|aAA
aBB|a
bBB| A

a

AwW>®n
lLLll

Obtain the corresponding PDA

What is the application of GNF notation of a CFG?

. Obtain a the PDA to accept the language L = {a""|n > 1}
. Obtain a the PDA to accept the langhage L={ww®:|w] >1forwe (a+b)*}
. What is the general procedure used to convert from PDA to CFG?

. Obtain a CFG for the PDA shown below:

qe.a,Z) = (qo, AZ)
¥qo,a,A) = (go, A)
8(‘10» b9 A) = (qh 8)
¥qn&Z) = (q€)

Obtain a CFG that generates the language accepted by PDA M = ( {qo,q.} {a, b} {A VAR
9, qo, Z, {q,}) with the transmons

S(QO, a, Z) = (qO’ AZ)
8qo.b,A) = (qo. AA)
8(q{)’ a, A) = (ql’ 8)



308 E Finite Automata and Formal Languages

Summary

VVVVVYVVYVYYVY v

vV VV

' ~ .Now!! we know ' I_

Difference between finite automaton (FA) and pushdown automaton
(PDA)

Pushdown automaton

The transition diagram and moves of PDA

Actions performed by PDA

Instantaneous description _

Languagés accepted by PDA by a final state

Lénguages accepted by PDA by an empty stack »
Various ways of constructing PDA for the given languages
Deterministic and non-deterministic PDA

To obtain PDA from CFG, the method and solution to various types

‘. of problems
Applications of GNF
To obtain CFG from PDA

Solutions to more than 23 problems of various nature




Properties of Context Free Languages

What we will know after reading this chapter?

Pumping Lemma for CFLs
Proof of Pumping Lemma for CFLs
Applications of Pumping lemma for CFLs

vV V V VY

Solution to various problems and to show that the specified languages are not
context free.

CFL:s are not closed under union

CFLs are not closed under concatenation

CFLs are not closed under starclosure (kleene-closure)

CFLs are not closed under intersection

CFLs are not closed under complementation

YV V.V V V VY

Solutions to more than 20 problems of various nature

b

As|we have discussed in previous chapters that some of the non-regular languages can be
represented using context free grammars from which we can obtain the context free languages.
For example, the non-regular language such as L = {a"" | n > 1} can be easily generated using
context free grammars. There are so many other instances such as matching parentheses, to match
the nested if statements, whether a statement is syntactically correct or not and so on most of
which can be easily represented using CFGs. So, it is very important for us to learn the properties
of [context free languages. The different closure properties covered in this chapter are union,’
concatenation, star-closure, intersection, complementation etc. We have to remember that just
beci:aUSe the regular languages are closed under union, concatenation, *-closure, intersection,
complementation etc., it is not true that they are also closed under all these operations. This also
covers pumping lemma, which is a very useful concept in determining whether the given
language is context free or not.



310 B Finite Automata and Formal Languages

Note:
1. In the derivation process, if a non terminal A occurs in some sentential form startmg
from the start symbol and if a string of terminals can be derived from this sententnal
- form, then the non terminal A is useful. Otherwise, it is useless.

2. The non-terminal A can be recursive if and only if it can generate a string comainir"g

itself. For example, Consnder the derivation

S uAy = |

i

The non terminal A is recursive

a. If there is a production of the form ' ;
- A—> X]AX; | !

for some strings x;, X, € ‘(V U T)* (Direct recursion)

or
b. If there is a production of the form .
A—> .. Xl...
Xl1—..X2.. :
X2 ..X3...
X3—>...X4..

Xn— A ..(indirect recursion) !
: i
Now let us see how to prove that certain languages are not context free similar to the proof as we
did for regular languages using Pumping Lemma. The Pumping Lemma for Context E# ee

Languages (CFL) can be stated as follows: , ; |
8.1 Pumpmg Lemma ' ‘ i

Pumping Lemma for Context Free Languages: Let L be the context free language and is

infinite. Let z is sufficiently long string and z € L so that |z 2 n where n is some positive mteger
If the string z can be decomposed into combinations of strings

Z = uvwxy

such that jvwx| < n, [vx| 2 1, then uv'wx'y €Lfori=0,1,2,......




Properties of Context Free Languages & 311

¥

Note{ The following observations can be made from the Pumping Lemma.

1. |nis the length of the longest string that can be generated by the parse tree where the same
non terminal never occurs twice on the same path through the tree.
- 2. | The string z is sufficiently long so that it can be decomposed into various sub strings u, v,
w, x and y in that sequence. v :
3. | The two sub strings v and x are present somewhere in z.
4. | The sub string u appears before v, the sub string w is in between v.and x and the sub
string y appears after x. .
5. | The string w in between v and x cannot be too long since [vwx| < n for some positive
integern. '
Both the sub strings v and x cannot be empty since [vx| 2 1. One of them can be empty.
If all the points mentioned from 1 to 5 are satisfied, and if we duplicate sub string v and x
same number of times, the resultant string will definitely be in L and the string z € L is
context free. Otherwise, the string z € L is not context free.

R

Proq& According to Pumping Lemma, it is assumed that string z € L is finite and is context free
langyage. We know that z is string of terminals which is derived by applying series of
productions. Proof of this theorem leads to the following two cases.

1

{
Cas’e§ 1: To generate a sufficiently long string z(it is assumed that the string is infinite), one or
morg variables (non-terminals) must be recursive (Note that infinite string can be generated if the
gralq'mar has some non-terminal A such that

A% o0AB

N
for sp'me o and B) and should be applied more than once.

finally string of terminals and the derivation stops. If we can prove these two cases, we have the
proo

l

Casi@: z € L implies that the after applying some/all productions some number of times, we get

for Pumping Lemma.

[ .
Pro«if of case 1: To generate a sufficiently long string z(it is assumed that the string is infinite),
- one ot more variables (non-terminals) must be recursive. Let us assume that the language is finite
and the grammar has a finite number of variables (assume that all are useful variables) and each
production has finite length. The only way to derive sufficiently long string using such
prodhctions is that the grammar should have one or more recursive variables. Assume that no
variz;ible is recursive. '

! Since no non-terminal (variable) is recursive, each variable must be defined only in terms
of terminal(s) and/or other variables. Since those variables are also non-recursive, they have to be
deﬁlfied in terms of terminals and other variables and so on. If we keep applying the productions
like this, there are no variables at all in the final derivation and finally we get string of terminals
and the generated string is finite. From this we conclude that there is a limit on the length of the
string that is generated from the start symbol S. This contradicts our assumption that the language



312 B  Finite Automata and Formal Languages

is-finite. Therefore, the assumption that one or more variables are non-recursive is mcom:ct It

means that one or more variables are recursive and hence the proof. _

!
Proof of case 2: z € L implies that after applymg some/all productions some number of : times

we get finally string of terminals and the derivation stops. Let z € L is sufﬁcxently long strmg and

so the derivation must have involved recursive use of some non-terminal A and the denvqnons

must have the form ;

q

S % uAy :

.Note that any derivation should start from the start symbol S. Smce A is used recurswely the
derivation can take the following form:

S SuAy =:>uvAxy
and the final. derivation should be of the form
S BuAy BHuvAxy Buvwxy =z
It implies that the following derivations

A BvAx
and

ASw

are also possible. From this we can easily conclude that the derivation

A Zvwx

must also be possible. Next we have to prove that the longest string vwx is generated th%hout
recursion since it is assumed that [vwx| £ n. This can be easily proved since CFG that generates
CFL does not contain &-productions or unit productions. It shows that every derivation step either
increases the length of the sentential form (using recursive variable) or introduces a terminal., The
derivation o

AZvAX
used earlier clearly shows that

x| 1.
Note from the derivation '

S ZuAy ZuvAxy -

that uvAxy occurs in the derivation, and

and




I : Properties of Context Free Languages 2 313
| :

are aJ:o possible, it follows that o
| " uv'wx'ye L

and lic‘nce the proof.
S .

i ,
8.2 Applications of Pumping Lemma for CFLs

The Pumping Lemma for CFLs is used to prove that certain languages are not context free
languages. Note that Pumping Lemma can not be used to prove that certain languages are context
free. In this section let us show that certain languages are not context free using Pumping lemma
(similar to the problems by showing that certain languages are non-regular languages).
The general strategy used to prove that a given language is not context free is shown below.
1. sume that the language L is infinite and it is context free.
slect the string say z and break it into sub strings u, v, w, x and y such that z = uvwxy where
IVWx| <nand |vx| > 1. '
3. F’md any i such that uv'wx'y & L. According to pumpmg lemma, uv'wx'y € L So, the result is
"a contradiction to the assumption that the language is context free. Therefore, the given
l{mguage L is not context free.

Example 8.1: Show that L = {a"bnc” | n > 0} is not context free.

Step} Let L is context free and is infinite. Let z = a"b“c" e L.
StepZ Note that |z| > n and so we can split z into uvwxy such that
"~ |vwx| Snand|vx|> 1

and $o uv'wx'y-€L for for i = 0, 1, 2....(This is according to Pumping Lemma). Let us take the
varidus cases A

Case 1: The strmg vwx is within a".

Let v @, x=a" where |vx|=j+k2>1 and [vwx| <=n whlch can be shown plctorlally as

\
) n n n
B

Now,according to Pumping Lemma, uv *wx’y.€L fori = 2 and the language generated is as
sho‘:sn below: :

t
H

n+j+k n n

i




L mE S e

Letv=al, x =b* where |vx|=j+k=1and |vwx| <=n which can be shown plctonally as !

314 E  Finite Automata and Formal Languages

Note that uv’wx’y = a™*b"c" = ¢ L when j j + k >=1 (Note that the string should have some
number of a’s followed by equal number of b’s and c’s). But according to pumping lemma

uv'wx’y € L, which is the contradiction.

Case 2: The string vwx is a"b".

|
]
n n n i
l
1
i

u

Now, according to Pumping Lemma, uv’wx’y €L for i = 2 and the language generatedils as
shown below: .

|
|

Note that uv’wx’y = a™b"™*c" = ¢ L when j + k >=1 (Note that the string should have some

'number of a’s followed by equal number of b’s and c’s). But according to pumping lemma

uv’wx’y € L, which is the contradiction.
Case 3: The string vwx is within c".

Letv=c, x=c* where |vx|=j+ k2l and [vwx|<=n which can be shown pictorially as !

- Now, according to Pumping Lemma, uv’wx’y €L for i= 2 and the language generated is as

shown below:

i

Note that uv’wx’y = a"h"c™** ¢ L when j + k >=1 (Note that the string should have some

number of a’s followed by equal number of b’s and c’s). But accordmg to pumping lemma
uv’wx’y € L, which is the contradiction. ~




Q

Properties of Context Free Languages & 315

But,-according to pumping lemma, n number of a’s should be followed by n number of b’s which
in turn should be followed by n number of c’s. In all the three cases we get contradiction to the
assumpuon that the language is context free.

So, the language L = {a“b“c“ | n >0} is not context free.

Exemple 8.2: | Show that L= {w‘|‘w € {a,b,c}* where n,(w) = ne(w) = n{w)} is not context free.

The language
L, ={a""c"|n>0}

is abtained by the intersection of L and the regular language represented by the regular expression
a*b*c* ie, 4

{a"b"c" | n > 0} = {a*b*c* N{w [we {a,b,c}* where n(w)=ny(W)=n{(w)}

We know that intersection of context free language and regular language is also a context free.
But, we have already proved that the language ‘

L; = {a"b"c" |n 20}
is rjot context free. Since L1 is not context free, it implies that,the, given language

L ={w|w e {ab,c}* where na(w) ny(w) = n(w)} is not context free
is also not context free.

| Example 8.3: ShowthatL= {v{m | we {a,b}' } is not context free.

Stqpl Assume that L is context free and is infinite. Let z = a"b"a"b" € L.

Ste{p 2: Since |z| > n, according to Pumping Lemma we can split z into u, v, w, x and y such that
| _ [vwx| <= n and |vx| >=1

and uv'wx' y €L for fori =0, 1, 2....Let us take the various cases of splitting the string into u, v,
w, x and y.

Case 1: The string vwx is within first a".

Let v=a), x =a" where |vx|=j+k21and |vwx| <=n which can be shown pictorially as

Noaw, according to Pumping Lemma, uv’wx’y eL fori=2.



316 H Finite Automata and Formal Languages

n++k n n n

2,42
uv-wx

Note that a“"”"‘b'l " = uv'wx’y ¢ L when J+k >=1 (Note that the string ww v of the form i is not
generated). But by pumping lemma, uv’wx y € L. which is the contradiction.

Case 2: Let visin first a" and x is in first b".

Let v =a), x = b* such that |[vx| = j + k >=1 and jvwx|<n

Note: w has a’sand b’s

" Now, according to Pumping Lemma uv’wx’y € L fori = 2. The string uviwx’y generated is as
shown below:

n+j n+k n n |
— —A A (
a...... ab,.... ba....... ab.... b |
4

ulv2 w |x2 l y

Note that a™b™*a"b" = uv’wx’y & L when ]+k >=1 (Note that the string ww of the form is nqt
generated). But by pumping lemma, uv’wx’y € L, which is the contradiction.

Case 3: Let v overlaps the first a"b" and x is the first b".

Let v = a'b* and x = b' such that [vx| =j + k +1> 1 and [vwx| < n as shown below.

Note: v has a’s and b’s, w and x has b’s, y has b’s followed by a"b"™.




'Properties of Context Free Languages =2 317

Accérding to Pumping Lemma, dvzwxzy € L for i = 2. The string uv’wx’y generated is as shown
below:

It isi very clear from the above figure that uv*wx’y & L when j+k+1 > 1. (Note that the string ww
-of tﬁe form is not generated). But by pumping lemma uv’wx’y € L which is contradiction.

In aﬁl the three cases we get the contradiction. Even in one of the cases we get the contradiction,
we fcan say that the language generated is not context free. So, it has been shown that the

language
, L;{wwlwe{a,b}'}

is not context free. |

Exunple 8.4: Show thatL = {a" | n > 0} is not context free.

Stepl: Assume that L is context—free and is infinite. Let z = a” € L where [a" | > n.

Step 2: Since [z| > n, accordmg to Pumping Lemma we can spllt z= a" into u, v, w, x and y
such that

[vwx|<nand |vx| 2 1
SO tilat uviwxiy eLforfori=0,1,2....
The% éplitting of the string z is shown in figure below.

E ' n!

A
o )
ulvlwlxly l

Let v=a, x =a* such that [vx| = j + k =1 and |va| < n. The string uv?wx’y can be
generated and is shown in the figure below.




318 K& Finite Automata and Formal Languages

nl+j+k
e

N S B
| u[vzlwlle y I

bl 141 .
uv?wx’y = a"** whenever j+k > 1

Whenn=2, ‘
n'+j+k=n!+j+k<n'+n
<n!+n'n
=n!(n+l)
= (n+1)!

n! < n!+j+k < (n+1)!
Since n!+j+k it lies between n! and (n+1)!, the string generated
uVZszy = A"k g
which is a contradiction. So, the language
| L={a"|n20}
is not context free.

Example 8.5: Show that L = {a®h?| p = q2 } is not context free.

Step 1: Assume that L is context-free and is infinite. So,' we can apply Pumping Lemma. - :
Let z=2a"b" € L where m = n® and [a™" | > n.

Step2: Since |z| > n, according to Pumping Lemma we can split the string z = uvwxy = a™p
such that

[vwx] <n and jvx| > 1

so that uviwxiy eL for fori = 0,1,2...

Step 3: Assume that the string vwx is within a™". Let v=a x =b* such that Jvx| = j+k > 1.



Properties of Context Free Languages & 319

when j+k > 1, and i = 0, then we have uv'wx'y as shown below: _

m-j n-k
i . A A
: WU eabo b
u W |y
i.e.; - .
a™b™ = uwyandj#0and k=0
ﬂ (implies)
(n-k)’ < (n-1)°
=n’-2n+ 1
*‘ ‘ =m-2n + | (since m = n’)
<m-j _
ﬂ (implies)
| m-j # (nk)> -

It nieans that m-j is not a perfect square. According to Pumping Lemma it should be a perfect
square. So,
| .
{ a™b™  =uwy g L
| .

whiich is contradiction
-4

Ste;} 4: So, the language
| L={a"|p=q"}

8
H

is nbt context free.
%
8.3 ‘:F Ls are closed under Union, concatenation and star

Théorem: If L, and L, are CFLs, then L, U Li, L;L, and L,* also denote the CFLs and so the
Context Free Languages are closed under union, concatenation, start-closure.

i



320 B Finite Automata and Formal Lariguages :

Proof: Let L, and L, are two CFLs generated by the CFGs
Gl = (vl’ le Pl; Sl)
and
Gl = (V29 T?.’ Pls SZ) . ;
respectively and assume that V| and V are disjoint. |
Case 1: Union of two CFLs is CFL

Now, let us consider the language L; generated by the grammar

G;=(V,UV,U S;, Ty U T, Ps, S3) !
where . . :

S: is a the start symbol for the grammar G; and S; ¢ (V, U V7) o 5
L P3—P1UP2U{S:;—')SISZ}

It is clear from this that the grammar G; is context free and the language generated by this
grammar is context free. It is easy to prove that ,

Ly=L,ul,
If we assume w € L,, then the possible derivation from S; is »
$;=8, 5w
On similar lines if we assume w € L,, then the possible deriyétion from S; is

S3::>Sg 5w

So, if w € L3, one of the derivations

83281
or
S3 = SZ.

is possible. In the first case, all the variables in V, and all the terminals in T, may be used to get
the derivation
S| 5w

which uses only the productions in P;. Similarly all the variables in V; and all the temunals in
T, may be used to get the derivation




Properties of Context Free Languages & 321

which uses only the productions in P, and it follows that

Thu

Li=L,uLs

5, it is proved that context free languages are closed under union

" Cask 2: Concatenation of two CFLs is CFL

Now, let us cbnsider the ‘Ianvguage L, generated by the grammar

‘whel

It i
grar

Gy =(ViUV,U 8, Ty UTy, Py, Sy)

re
e S, is a the start symbol for the grammar G, and S; (V, UV,
" e P4—-P|UP2U{S4-—)Slsa}
clear from this that the grammar G, is context free and the language generated by this

pmar is context free and so

L3=L1L2'

Thus, it is proved that context free languages are closed under concatenation.

Case 3: CFLs are closed under star-closure

where

It is

grammar is context free and so

Now, let us consider the language Ls géneratcd by the grammar

Gs= (VU S5 Ty, Ps, S5)
e S;is a the start symbol for the gram:har Gs
L P5=P1U{Ss—)S|85|8}
clear from this that the grammar Gs is context free and the language generated by this

Ls=Ls

Thus, it is proved that context free languages are closed under star-closure.

Th
start

, we have proved that the context free languages are closed under union, concatenation and -
losure

8.4 CF Ls are not closed under intersection

Th¢orem The CFLs are not closed under intersection. If L, and L, are context free languages, it
is npt always true that L1 N L2 is context free language



322 & Finite Automata and Formal Languages

Proof: Let us prove this theorem by taking counter examples. Consider the two languages

L, ={a"b"c¢"|n2>0,m20}
and
{a"b"‘ "n20, m>0}
The two languages are context free, as we can easily obtain the corresponding contexl free
grammars . 0

S S SS:
Si — aSpble ‘ ‘ B . :
S: - CS:|e B ‘
and ‘
S - vaS’IS,
S; > bSicle

Now, let us take i O
‘ LiNnL,={a"""|n2>0} ,;

We have already proved earlier that this language is not context free. Thus we can prove that
the family of context free languages is not closed under intersection.

i
i

8.5 CFLs are not closed under complementation , |

i

Theorem: The CFLs are not closed under complementation. If L is context free language, it 1s not
true that complement of L is context free language.

Proof: Let us prove this theorem by contradiction. Suppose that context-free languag&s are

" closed under complementation. So, if L, and L, are context-free languages, then. Ll andLg are
also context free. We have already proved that CFLs are closed under union. i

So,

L,vlL, |
must be context free. Since we have assumed that the CFLs are closed under cOmplementatio+,

L 1V L 2 . ' 5
must be context free. But, according to de Morgan’s law

21QZZ =L;yNnL,

So,
Lin Lz




must
lang

und

Properties of Context Free Languages & 323

be context free which is a contradiction (As we have already proved that the context free
ages are not closed under intersection). Since the context free languages are not closed

intersection, our assumption that the CFLs are closed under complementation is not true.

So, t'E family of context free languages are closed under complementat:on

Note:‘_We have seen that the following languages

1. L={a""%"|n=0}

2. L={w | w e {a,b,c}* where n(w) = nyfw) = n{w)}
3. L= {wwlwe{ab}'

4. L= {a“|n>0}

5. L={a"|p=q’

are njot context free and it is not possible to represent using context free grammars and so we can
not have the corresponding PDA for these types of languages. Even then some of the important
pomb we can make at this stage are: .

:
3.

i
,

The regular languages are the subset of context free languages and so context free
languages are more powerful than the regular languages.

The statement 1 automatically implies that PDAs are more powerful than the finite
automaton.

But, the PDAs are not strong enough to accept some of the languages as pointed out
earlier that are not context free and so we need much more powerful automaton than .
the PDA such as Linear bounded Automat or Turing Machine. Let us concentrate on
Turing Machines in the next chapter.

Exefrcises:

z
3.
4.
5.
6.
7.
B.
9,

State and prove Pumping Lemma for context free languages?

What are the applications of Pumping Lemma?

Show that L = {a""c" | n = 0} is not context free.

-Show that L = {w | w € {a,b,c}* where n (w) = ny(W) = n.(w)} is not context free
Show that L = {ww | we {a,b}" } is not context free.

Show that L = {a" |n20} i is not context free.

Show that L = {a"b? | p = q* } is not context free

Prove that CFLs are closed under union, concatenation and star-closure

Prove that CFLs are not closed under intersection '

10. Prove that CFLs are not closed under complementation



324 H . Finite Automata and Formal Languages

Summary

Now!! We khow

Pumping Lemma for CFLs
Proof of Pumping Lemma for CFLs
Applications of Pumping lemma for CFLs

V V V V

Solution to various problems and to show that the specified languages are
not context free. ‘ |
CFLs are not closed under union

CFLs are not closed under concatenation

CFLs are not closed under starclousre (kleene-closure)

CFLs are not closed under intersection

CFLs are not closed under complementation

VV YV VVY

How to design Turing machines for various types of problems.




Turing Machines

What we will know after reading this chapter?

Concept of Turing Machine model |

Definition of Turing nlaqhine (Standard Turing machine)
Definition of Instantaneous description of TM

Moves of TM

Languages accepted by TM

Recursively enumerable'language

Constructing TM:s for varieties of languages

vV VYV V VYV VY

"TM as transducer

~

Turing Machine (TM) is modified version of the PDA and it is much more powerful than PDA.
Instead of using stack as in PDA, the TM uses the tape to store the symbols. The Turing machine
is aigeneralized machine which can recognize all types of languages viz, regular languages
(generated from regular grammar also known as type 3 grammar), context free languages
(gen?ated from context free grammars also known as type 2 grammars) and context sensitive

langpiage (generated from context sensitive grammar also known as type 1 grammar). Apart from
thesé:languages, the turing machine also accepts the language generated from type O grammar
(alsg known as unrestricted grammar).. Thus, Turing machine can accept any language. This
chapter mainly concentrates on building the turing machines for any language.

9.1 f["uring machine Model

The?Turing machine model is shown in figure 9.1. It is a finite automaton connected to read-
write head with the following components:
1
L
i® Tape :
i@ Read-write hea
{ = Control unit )



326 B Finite Automata and Formal Languages

Tape

|....|a,|a2]a3l.....]b[blbl....l |

Read-write Head

Control
- Unit

Fig 9.1 Turing machine model

Tape is used to store the information and is divided into cells. Each cell can storej the

‘information of only-one symbol. The string to be scanned will be stored from the leftmost
position on the tape. The string to be scanned should end with blanks. The tape is assumed lp be
infinite both on left side and right side of the string. o
Read-write head The read-write head can read a symbol from where it is pointing to and n} can
write into the tape to where it points to. »

Control Unit The reading from the tape or writing into the tape is determined by the control unit.
The different moves performed by the machine depends on the current scanned symbol and the
current state. The control unit consults action table i.e., transition table and carry out the tasks.

The read-write head can move either towards left or right i.e., movement can be on. botﬂ the
directions. The various actions performed by the machine are: :

1. Change of state from one state to another state

2. The symbol pointing to by the read-write head can be replaced by another symbol

3. The read-write head may move either towards left or towards right.

If there is no entry in the table for the current combination of symbol and state, then the maéiﬁne
will halt. The Turing machines can be represented using various notations such as :

». Transition tables
* Instantaneous descriptions
* Transition diagram

9.2 Transition Table

Consider the transition table shown in table 9.1. Later sections describe how to obtain!| the
transition table 9.1. Note that for each state q, there can be a corresponding entry for the symbol
in I". In this table the symbols a and b are input symbols and can be denoted by the symbol X .
The symbols a, b, X, Y and B are denoted by I' and £ < I". The symbol B indicates a blank




. : : Turing Machines & 327
|

undefined entries in the table indicate that there are no-transitions defined or there can be a
transition to dead state. When there is a transition to the dead state, the machine halts and the
input;string is rejected by the machine.

chararer and usually the string ends with infinite number of B’s i.e., blank characters. The

S : Tape symbols (I")
States a b X Y B
9o (91,X,R) - - (93, Y,R) -
q (q.a.R) | (g2.Y.L) - (qQ,Y,R) |- -
Q| (gal) - (9o.X.R) | (q2Y,L) -
qd3 - - - (g3.Y.R) (94,B.R)
q4 - - - - -

Table 9.1 Transition table

The mpnsitions shown in the table can also be written as

S(qo, a) = (Ch,X,R.)
8(qo, Y) = 1(q3Y,R)
3(q;, a) = | (quaR)

3(q1, b) = | (q2Y,L)
8(q1, Y) = @.YR)
3(qs, a) = | (q2.a,L)

3(q2, X) = | (qo.X,R)
5(‘12, Y ) = (q27YsL)
9(q3, Y) = | (@3.Y.R)
3(q3, B) = | (94,B,R)

o QxT to Qxe}LorR})

In general, 8 can be defined as follows:

3
{

wherF

i

; Q = {qu ql’ QZ, q31 Q4}

| Z={ab}

t T ={a,b,X,Y,B}

. Qo is the start state
B is a special symbol indicating blank character
F = {q4} which is the final state.

5:Qx T to(Qx I x{L,R})i.e., cross product of Q, I and {L,R}

, Thus?, formally a Turing Machine M can be defined as follows.



328 K Finite Automata and Formal Languages

Definition: The Turing Machine M =(Q, 2, T, §, qo, B, F) where

Q is set of finite states
2 is set of input alphabets ;
I' is set of tape symbols

3 is transition function fromQ x I toQx I" x {L,R}

Qo is the start state

B is a special symbol indicating blank character

F ¢ Q is set of final states.

Since there can be several variations of TM (whlch we see in the coming chapters), the TM that
we discuss now can be called standard Turing Machine with the following features:

1. The Turing machine has a tape that is divided into number of cells with each cell capable of .
storing only one symbol. The tape is unbounded (i.e., no boundary on the left as well ; as on
the right) with any number of left or right moves.

2. The machine is deterministic. It can have either zero or one transition for each confi gurahon

Some of the symbols on the tape can be considered as the input. The symbols on the tape

(some symbols or all the symbols) can be considered as the output whenever the TM halts.

9.3 Instantaneous description (ID)

Unlike the ID described in PDA, in Turing machine (TM), the ID is defined on the whole $tring
(not on the string to be scanned) and the current state of the machine. The formal deﬁmuon of
instantaneous description (ID) in case of TM is defined as shown below:

w

Definition: An ID of TM is a strmg in an, where q is the current state, ofy is the string made

from tape symbols denoted by I ie., o and B € I"". The read-write head points to the first
character of the substring f3. The initial ID is denoted by qaff where q is the start state and the
read-write head points to the first symbol of o from left. The final ID is denoted by ofiqB where
q € F is the final state and the read-write head points to the blank character denoted by B.

Examplé 9.1: Consider the snapshot of a Turing machiné
' Tape _ v o
Ial'lazlaal&tl%laslaelavlasl ------ |

Read-write Head

Control !
Unit ’ : g




Turing Machines & 329

In this machine, each a; € " ( i.e., each a; belongs to the tape symbol). In this snapshot, the
symbol as is under read-write head which is the next symbol to be scanned and the symbol
towards left of as i.e., q2 is the current state. So, in this case an ID is denoted by '

13223 q235a637a§. .

@ q p general formof ID

l
wher“: the substring »
1 a1d-a23a4
towa*ds left of the state g is the left sequence, the substring
I as536d7ag. .
towai'ds right of the state q- is the right sequence and
| | Qe

is the current state of the machine. The symbol as is the next symbol to be scanned. Assume that‘
the current ID of the Turing machine is

2)2;a3a4q245364723. - - -

as shown in snapshot of example 9.1. Suppose, there is a transition

P
i

5(%, aS) = (Q3’ b], R)

It means that if the machine is in state g, and the next symbol to be scanned is as, then the
machine enters into state qs replacing the symbol as by b, and R indicates that the read-write head
is mt?ved one symbol towards right. The new configuration obtained is

‘ alaaa3zub.q3a6a7ag. v
ThlS ican be represented by a move as shown below
a 32333461235368738 " alaza3a4b1q3a¢.a7ag

Slmllarly if the current ID of the Turing machme is

' ;2723324024526 7a8. - --
and jthere is a transition
; S(QZ, a5) b (ql, C1, L)

meahs that if the machme is in state g, and the next symbol to be scanned is as, then the machine
entets into state q; replacing the symbol as by ¢, and L indicates that the read- wrlte head is moved
one symbol towards left. The new configuration obtained is
§ a|a3a3q|a4c,a6a7a3. .
This can be represented by a move as shown below:

41224324 2d5d4d74g. . " 2;2,a3(a4C1d¢a74g. -



330 H Finite Automata and Formal Languages

This configuration mdlcates that the new state is q;, the next input symbol to be scanned is a4 In
general, the actions performed by TM depends on g

1. The current state.
2. The whole string to be scanned ,
3. The current position of the read-write head

The action performed by the machine consists of
1. - Changing the states from one state to another
2. Replacing the symbol pointed to by the read-write head
3. Movement of the read-write head towards left or right.
The formal definition of move for TM is shown below:
Definition: Let M =(Q, X, I', §, qo, B, F) be a TM. Let the ID of M be

4;a22a3. ..ak.1GakAk4]- . --Ap g

where a; € T" for 1 <j <n, q € Q is the current state and a as the next symbol to be scannq}d If
there is a transition

a(qv ak) = (pv bv R)
then the move of machine M will be

4;2a3...8%.14axAx41....Ap I‘ a;a»as.. .ak_lbpam veeelp

If there is a transition
3(q. a) =(p, b, L)

then the move of machine M will be
2132a3...3%.1Gax8x41- . .-Ap " a;aas.. .ak_zpak-lbam cesdp ) 4

9.4 Acceptance of a language by TM

Note: The Turing Machine can do one of the following things:
a. Halt and accept by entering into final state.
“b.  Halt and reject. This is possible if the transition is not defined i.e., 8(q, a) is dot
defined.
c. TM will never halt and enters into an infinite loop.
It is true that there is no algorithm to determine and tell whether a given machine always haltq

I
The language accepted by TM is defined as follows. B i
?

i



Turing Machines = 331

Defjnition: Let M = (Q, X, T, 8, go B, F) be a TM. The language L(M) accepted by M is
defined as v

L(M)= {w | gow } * aupo where w € X', pe Fand oy, @z € ')

whére qow is the initial ID and a,pa, is the final ID. The set of all those words w in =" which
causes M to move from start state qo to the final state p.

The string w which is the string to be scanned should end with infinite number of blanks. Initially,
the imachine will be in the start state qo with read-write head pointing to the first symbol of w
from left. After some sequence of moves, if the Turing machine enters into final state and halts,
theit we say that the string w is accepted by Turing machine. The language accepted by TM is
called recursively enumerable language or RE language. The formal definition is shown
be‘l?w:
Deffinition: A language L is recursively enumerable, if it is accepted by aTM i.e., given a string
w which is input to TM, the machine halts and outputs Yes if it belongs to the language. If w does
notjbelong to the lanauge L, the TM halts and outputs NO.
| The languages with Turing Machine which will always halts and output yes if it belongs
to the language or output no if it does not belong to the language are called decidable languages
or recursive languages. The Turing machines that always halt irrespective of whether they accept
or +Ot are a good model for an algorithm. If an algorithm exists to solve a given problem, then
the problem is decidable otherwise it is un-decidable problem.

9.5 Construction of Turing Machine (TM)

In this section, we shall see how TMs can be constructed.

Example 9.2: Obtain a Turing machine to accept the Iahguage
L={0"n|n21}
It i§ given that the languagé accepted by TM should have n number of 0’s followed by n number

of I’s. For this let us take an example of the string w = 00001111. The string w should be .
acdepted as it has four zeroes followed by four 1’s. .

Geberal Procedure

Leg qo be the start state and let the read-write head points to the first symbol of the string to be

scanned. The general procedure to design TM for this case is shown below:

1. | Replace the left most 0 by X and change the state to q, and then move the read-write head
| towards right. This is because, after a zero is replaced, we have to replace the corresponding 1
' 50 that number of zeroes matches with number of 1’s.

2. Search for the leftmost 1 and replace it by the symbol Y and move towards left (so as to
. obtain the leftmost 0 again). Steps 1 and 2 can be repeated.



332 H Finite Automata and Formal Languages
Design: Consider the situation
XX}f\OYYl 1
9o

where first two 0’s are replaced by Xs and first two 1’s are replaced by Ys. In this snuatlon,:the
read-write head points to the left most zero and the machine is in state qo. With this as: the
configuration, now let us design the TM.

Step1: In state qo. replace 0 by X, change the state to q; and move the pointer towards right. The
transmon for this can be of the form

8(qo, 0) = (q1, X, R)
The resulting configuration is shown below.

XXXOYY1l

q:

Step2: In state q;, we have to obtain the left-most 1 and replace it by Y. So, let us move the
pointer to point to leftmost 1. When the pointer is moved towards 1, the symbols encountered
may be 0 and Y. Irrespective what symbol is encountered, replace 0 by 0, Y by Y, remain in state
q: and move the pointer towards right. The transitions for this can be of the form _

8((11, O) = (ql; 09 R)
3(q1, Y)=(q1 Y.R)

When these transitions are repeatedly applied, the following configuration is obtained.
XXXO0YY +1 ‘
q

Step 3: In state q,, if the input symbol to be scanned is a 1, then replace 1 by Y, change the state
to g, and move the pointer towards left. The transition for this can be of the form

8ai, D =(a, Y. L) ;
The resulting configuration is shown below.

xxx’oqw

q




g , _ . v Turing Machines & 333

Note that the pointer should be moved towards left. This is because, a zero is replaced by X and
the corresponding 1 is replaced by Y. Now, we have to scan for the left most 0 and so, the pointer
wag move towards left.
Step 4: Note that to obtain leftmost zero, we need to obtain right most X first. So, we scan for the
right most X. During this process we may encounter Y's and 0’s. Replace Y by Y, 0 by 0, remain
in state g, only and move the pointer towards left. The transitions for this can be of the form

| 8(q2 Y) = (qx. Y. L)

8(qx. 0) =(q: 0, 1)

Thé following configuration is obtained.'

i
i
i
f

i Q2'

|

Steip 5: Now, we have obtained the right most X. To get leftmost 0, replace X by X, change the
state to qo and move the pointer towards right. The transition for this can be of the form

_ XX%OYYY 1

o &gz X) = (g0 X, R)
andj the following configuration is obtained.

XXX%YYY 1

: : . Jo
Nozw, repeating the steps 1 through 5, we get the configuration shown below:

XXXXYYYY

)

o

Stép' 6: In state qo, if the scanned symbol is Y, it means that there are no more 0’s. If there are no
0’§ we should see that there are no 1’s. For this we change the state to qs, replace Y by Y and
mave the pointer towards right. The transition for this can be of the form -

: 8(qo, Y) =(gs Y, R)
k .

and the following configuration is obtained.

mm%w'

q3



334 & Finite Automata and Formal Languages

In state g3, we should see that there are only Ys and no more 1’s. So, as we scan replace Y b{y Y
and remain in g3 only. The transition for this can be of the form

8((1.% Y) (q37 Yv R)
Repeatedly applying this transition, the following configuration is obtained. |

XXXXYYYY$

q3

Note that the string ends with infinite number of blanks and so, in state q; if we encounter the
symbol B, means that end of string is encountered and there exists n number of 0’s ending withn
‘number of 1’s. So, in state qs, on input symbol B, change the state to g, replace B by B and mpve
the pointer towards right and the string is accepted. The transition for this can be of the form f

(g3 B) = (g4 B, R) g

where qq is the final state and the following configuration is obtained.

XXXXYYYYB?\

- So, the Turing machine to accept the language ¥
' L={a"b"|n> 1)
is given by
M=, 2, T,9,q0B,F)
where
Q= {qo, q1, 92 g}
2 ={0,1} : T
I ={0,1,X,Y,B} |
qo€ Q is the start state of machine. ’
B € T is the blank symbol.
F = {q,} is the final state.
d is shown below.

9,00 = (@Q.X,R)
8qi,00 = (q,0,R)
&q,Y) = (@ Y,R)
dq, 1) = (quY,L)
8q»Y) = (q.Y.L)
q:0) = (q0,L)
3q»X) = (9, X,R)




Turing Machines & 335

8qoY) = (@ Y,R)
&g, Y) = (@Y,R)
6(q3’ B) = (q4’ B9 R)

i
i

The ﬁansitions can also be represented using tabular form as shown below.

i
[

¥ S : Tape symbols (I")

| States 0 1 X Y B

- 9 | (qi.X.R) - - (:.Y.R) -
qi (q1,0,R) [(q..Y,L) - (q..Y.R) -

i @ [ (@0L) - (@XR) |(qY.L) -
li q3 - - = (QBvaR) (q49B9R)
| Qs - - - - -

9.6 ':I‘ransition diagram for Turing Machine (TM)

The Turing Machine can be represented using transition diagram. The transition diagram consists
of nades corresponding to the states of Turing Machine. An edge from state ¢ to state p will have
a label of the form (X /Y, D) where X and Y are tape symbols and D is the direction either ‘L’ or
‘R’ where ‘L’ stands for left and ‘R’ stands for right i.e., the movement of the head can be either
left gr right. Here, X is the scanned symbol and Y is the symbol written on to the tape. The start
state jof the Turing Machine is indicated by an arrow entering the state with label ‘Start’. The fina!
state$ are represented by two concentric circles. The transition diagram for the example 9.2 is
shoMn below: '

i

b Y/YR Y/YL

3 . 0/0,R 0/0,L

Start O/X’ggbl 1Y, ’

<
=
o
A
®)
5
.=}

@
To accept the string: The sequence of moves or computations (IDs) for the string 0011 made by
the Thring machine is shown below: ‘

(Initfgd ID) qo0011 |-Xq,011 } X0q;11 | Xq:0Y1} .X0Y1 | Xq0Y1 | XXq, Y1} XXYq,1 }
XX@YY | Xq:XYY F XXqoYY F XXYq;Y F XXYYqs | XXYYBq,(Final ID)

Since the final state q, is reached, the string 0011 is accepted.



336 E Finite Automata and Formal Languages
Example 9.3: Obtain a Turing machine to accept the language -
L(M) = {0"1"2" |n> 1}

It is given that the language should consist of n number of 0’s followed by n number of 1’s which
in turn should be followed by n number of 2’s. Let us consider the string 000011112222 and we
shall see how to design the Turing Machine. To design the Turing Machine, consider the sit@tion
where first two 0’s are replaced by X’s, first two 1’s are replaced by Y’s and first two 2’s are
replaced by Z’s as shown in fig.9.2.a. '

XX00YY 1127222 - XXXO0YY117722 XXX0YY11Z2Z22

9o q . q
(@) (b) _ (©) ¥
Fig. 9.2 Various configurations

Now, with fig 9.2.a as the current configuration, let us design the Turing machine. In state qo, if
the next scanned symbol is O replace it by X, change the state to q, and move the pointer towards
right and the situation shown in fig.9.2.b is obtained. The transition for this can be of the form

8qo. 0) = (@1, X, R) |
In state q;, we have to search for the leftmost 1. It is clear from fig. 9.2.b that, when we are
searching for the symbol 1, we may encounter the symbols 0 or Y. So, replace 0 by 0, Y by Y and
move the pointer towards nght and remain in state q; only. The transitions for this can be of the
form :
5(‘11’ O) = (qh Ov R)
5(‘11, Y) = (qls Y’ R) .

The configuration shown in fig. 9.2.c is obtained. In state q;, on encountering 1 change the :state
to q, replace 1 by Y and move the pointer towards right. The transition for this can be of the form

8(qh 1) = (CIZ, Ya R)

and the configuration shown in fig.9.3.a is obtained.

XXX0YYY1ZZ22 XXX0YYY1ZZ22 XXX0YYY1ZZZ2
Q@ Q2 93
@ . (b) (©)
Fig. 9.3 Various configurations




Tuﬁng Machines & 337

In staite q2, we have to search for the leftmost 2. It is clear from fig. 9.3.a that, when we are
searching for the symbol 2, we may encounter the symbols 1 or Z. So, replace 1 by 1, Zby Z and
move the pointer towards right and remain in state g, only and the configuration shown in-
fig.9.3.b is obtained. The transitions for this can be of the form

| 8gs D) =(@ LB
] » 5(612’ Z) = (Cb, Z’ R)

In stdte q,, on encountering 2, change the state to g, replace 2 by Z and move the pointer towards
left. The transition for this can be of the form o

i

| (g2 2) = (3. Z, L)

and the configuration shown in fig.9.3.c is obtained. Once the TM is in state qs, it means that first
0 is feplaced by X, first 1 is replaced by Y and first 2 is replaced by Z. At this point, we have to

search for the rightmost X to get leftmost 0. During this process, it is clear from fig.9.3.c that the
symbols such as Z’s, 1’s, Y’s, 0’s and X are scanned respectively one after the other. So, replace
ZbyZ 1byl, YbyY,O0by0, move the pointer towards left and stay in state q; only. The

transitions for this can be of the form

¢

33 2)=(3, Z,L)
8(qz, 1) =(qs, 1, L)
5(‘]39 Y) = (Ch, Yv L)

5 8(qs, 0)=(q0,L)

L
Onlj on encountering X, replace X by X, change the state to qo and move the pointer towards
right to get leftmost 0. The transition for this can be of the form

5(‘13’ X) = (q()? Xa R)

r

All the steps shown above are repeated till the follc;wing configuration is obtained.

XXXXYYYYZZZZ

In st;‘ate qo. if the input symbo™ *! ~" it means that there are no 0’s. If there are no 0’s we should
see t@hat there are no 1’s also. . 3° is to happen change the state to gs, replace Y by Y and move
the pointer towards right. The transuion for this can be of the form

8(q0s Y) = (q4ﬂ Y7 R)
i
In state g4 search for only Y’s, replace Y by Y, remain in state g, only and move the pointer

i

towards right. The transition for this can be of the form

8(Q4~ Y) = (q-h Y! R)



338 E Finite Automata and Formal Languages

In state qq, if we encounter Z, it means that there are no 1’s and so we should see that there‘;a‘re no
2’s and only Z’s should be present. So, on scanning the first Z, change the state to qs, replace Z
by Z and move the pointer towards right. The transition for this can be of the form ‘

89 2)=@5 Z.R)

: H
But, in state g5 only Z’s should be there and no more 2’s. So, as long as the scanned symbolf isZ,
remain in state gs, replace Z by Z and move the pointer towards right. But, once blank symbol B
is encountered change the state to g, replace B by B and move the pointer towards right aljii say
that the input string is accepted by the machine. The transitions for this can be of the form - -

8(as Z) = (g5, Z, R)
8(‘15, B) = (Q6, B’ R)

where g is the final state.

So, the TM to recognize the language L = {0"1"2" | n> 1} is given by .
M=(Q, Z2,T,3,q.B,F)

where

Q=1{90, q1. Q2 G5, 94, G5, G}
Z ={0,1,2}
'={0,1,2,X,Y,Z B}

Qo is the start state

B is blank character

F = {qe} is the final state : ;
&-is shown below using the transitional table. B

I
states 0 1 ] 2 VA Y X B
' o . qi.X,R qsY,R
q q1.0.R | g2 Y.R q1,Y,R
[+ 921R | q3ZL | qnZR
1 q;.0L | qslL "1 gs,ZL | q3Y.L | qe XR
qa | asZR | q.Y.R ;
5 ' gs.Z.R , (g6.B.R)
9e

The transition diagram for this can be of the form .




Y'YR ZZR
| 0OR /1R
orX, 7Y,

R d1

0/0,L

Turing Machines = 339

Example 9.4: Obtain a TM to acoept the language L = {w | w e (0+1)% conuining the substring

001

is shown below:

0 1
Go Qi do
qi qQ2 Y0
q» 92 93
qs q3 qQs

Thel DFA which accepts the language consxstmg of strings of 0’s and 1 s havmg a sub strmg 001

The transition table for the DFA is shown below:

We have seen in chapter 3 that any language which is accepted by a DFA is regular. As the DFA
prot:esses the input string from left to right in only one direction, TM also processes the input
stnhg in only one direction(unlike the previous examples, where the read-write header was
moYmg in both the directions). For each scanned input symbol (either 0 or 1), in whichever state
the DFA was in, TM also enters into the same states on same input symbols, replacing 0 by 0 and
1 by 1 and the read-write head moves towards right. So, the transition table for DFA and TM
remains same (the format may be different. It is evident in both the transition tables). So, the.



340 E Finite Automata and Formal Languages

transition table for TM to recognize the language consisting of 0’s and 1’s with a substring 001 is
shown below: :

0 1 B
% | 9.0R go,1.R -
q | q20R go. LR -
Q> qz,O,R qa, 1,R . - .
93 qS’O’R 93, 1 ’R QmB»R
qQs

The TM is given by
M=(Q, 2,T,8,q0,B,F)

where .
Q = {Q(» G1» 92, G3s Q4}
2 ={0,1}
I' ={0, 1} . '
- 8- is shown in the form of transition table above
qo is the start state
B blank character
F = {q4} is the final state

The transition diagram for this is shown below.

1I/1,R
I/1,R 0/OR  onR

—~0/0, B/BR - ' |
| a0 YOk &&1/1,{{ ~ @ |

I/1,R

Example 9.5: Obtain a Turing machine to accept the language containing strings of 0’s andi 1’s
ending with 011.

The DFA which accepts the language consisting of strings of 0’s and 1’s ending with the string
001 is shown below: '

The transition table for the DFA is shown below:




o) 0 1

4 Go q Jo

Q| q Q@
q: Qi qs
Q| qi Qo

Turing Machines & 341

We have seen in chapter 3 that any language which is accepted by a DFA is regular. As the DFA
processes the input string from left to right in only one direction, TM also processes the input
string jin only one direction(similar to the example 9.5.). For each scanned input symbol (either O
or 1).;in whichever state the DFA was in, TM also enters into the same states on same input
symbc#[s, replacing 0 by 0 and 1 by 1 and the read-write head moves towards right. So, the
transition table for DFA and TM remains same (the format may be different. It is evident in both
the transition tables). So, the transition table for TM to recognize the language consisting of 0’s
and 1's ending with a substring 001 is shown below: :

51T 0 1 B
Jo Qi 0.R 9o, LR -
Q% quO,R 92, 1L,R ) -
? ’ q2 th’R qi"lsR -
3‘ 93 » qlaO’R qul’R : qA»B R
; Q| - - -
The TM is given by ’

i M.=(Qs Z’ F,S,QO,B;F)
where:

Q=1{90 9. 92 ¢}

z ={0, 1}

I' ={0,1,B}

- is defined already

qo is the start state

B blank character

F = {qq} is the final state

The transition diagram for this is shown below.

I/1,R 0/0,R




342 H Finite Automata and Formal Languages
Example 9.6: Obtain a Turing machine to accept the language
L={w|wisevenand Z ={ab}}

The DFA to accept the language consisting of even number of characters is shown below.
| a, b
@< @
a, b
The transition table for the DFA is shown below:

a b . :
| Jo 9 _q : : |
q: 9o 9o ) :

We have seen in chapter 3 that any language which is accepted by a DFA is regular. As the' DFA
processes the input string from left to right in only one direction, TM also processes the linput
string in only one direction(similar to the example 9.5.). For each scanned input symbol (either a
or b), in whichever state the DFA was in, TM also enters into the same states on same input
symbols, replacing a by a and b by b and the read-write head moves towards right. So, the
transition table for DFA and TM remains same (the format may be different.).So, the tram$ition
table for TM to recognize the language consisting of a’s and b’s having even number of symbols
is shown below:

) a b B:
0 QI,a,R 'leb:R' . qLB,R
1 qua’R qO»va -

@] - - -
The TM is given by

M:(Q, Z, F,S,qO,B,F)

where

Q= {qo, qi}
2 ={a, b}

I' = {a, b, B} |
- is defined in the form of table above ,
Qo is the start state ’

B blank character _
F = {q,} is the final state

The transition diagram of TM is given by




Turing Machines &= 343

Exari‘tple 9.7: Obtain a TM to compute the function — which is called monus or proper

/

subthction and is defined by m -n= max(m-n, 0)

Note: The monus operation is defined as

| m-n=m-nifm2n
and .

‘ m-n=0ifm<n.
It is clear from this definition that the Turing Machine is supposed to perform monus operation
and Wwill not accept anything and so the concept of final state will not come into picture. To start

n

withg the tape consists of 0"10" which is surrounded by blanks and the machine halts with 0™
on lts tape surrounded by blanks. Here, m number of 0’s and n number of 0’s are replaced by the
delimniter 1. -

General Procedure: The sequence of 0’s is partitioned into first group with m number of 0’s
follawed by a 1 and followed by second group with n number of 0’s. The machine finds the
Ieftrbost 0 and is replaced by blank B. Then move towards right to search for 1. After finding 1, it
searches leftmost 0 in the second group and is replaced by 1 and move towards left to get leftmost
0 in the first-group. This procedure is repeated till one of the following conditions are satisfied:

®  When searching for a 0 in second group, if B is encountered it means that n number 0’s in

* the second group are replaced by 1’s and n+1 zeros in the first group are changed to B’s.
Now, the second group will have n+1 ones. The machine replaces n+1 1's by one 0 and n

. B’s and observe that only m —n 0’s exists on the tape

= If the first group if the machine M can not find a 0 (since first m 0’s have already been

& changed to B’s) it means that m <n and sono 0’s and 1’s should be there on the tape.

Theﬂ% brief description of each state to achieve the above task is shown below:

In isgate Qo On encountering a 0, change the state to g, replace 0 by B and move the head
towards right using the transition J

8(qo, 0) = (q1. B, R)



344 H Finite Automata and Formal Languages

On encountering a 1 (means that all 0’s in the first portion are replaced by B’s) change the sthte to
gs as shown below: : ’

8(q0» 1) = (gs, B, R)

In state q1: we search for leftmost 1. Keep updating the head towards right till we encounter 1
replacing 0 by 0 and remaining in go. On encountering 1 change the state to g2 and move to\;#xards
right using the transition - : ' ' ‘
8(qi, 0)=(q1, 0, R)
8(91, l) = (‘h, lv R)

In state q2: if we encounter O replace it by 1, change the state to q; (to get leftmost 0 m left
portion) and move the header towards left as shown below: o

&qz 0)=(qs, 1, L)

If we encounter 1 replace it by 1, remain in q; and move the head towards right to obtain leftjnbst
0 as shown below: ' '

8(‘12, l) = (q29 lv R)

If we encounter B, it means that no more 0’s are found and change the state to g4 which indicates
n 0’s out of m 0’s are cancelled and subtraction is complete. :

8((12, B) = (q4r Bv L)

Now, in state q4 we have to convert all 1’s to blanks.

In state ¢3: To get leftmost 0, replace 1 by I, replace 0 by 0, remain in qs and move the head
towards left using the transitions: :
8(q3, 0) = (g3, 0, L) g
8(qs, 1) =(gs, 1, L)

_ On encountering B, change the state to q, and move the head towards right using
&Qb B) - (qu By R)

In state q4: Let us convert all 1’s to blanks using the following transitions ;
' 8(q41 1) = (Q4s Ba L) ;
6(q49 0) = (Q«t,‘ 0, L)

Note that out of m 0’s, n+1 0’s are replaced by blanks. But, we are supposed to replace orﬁy n
0’s. So, one blank should be replaced by 0 and halt the machine by entering into state gg. |

8(q4s B) = (Q6, 0¢ R)

In state qs: In state g5, the 6utput should be 0. The tape should not have any symbols, except|B’s.
So, replace all 1’s and all remaining 0’s with B’s using the transitions

5((15, O) = (qS» B! R)




Turing Machines & 345

8(qs, 1) =(gs, B,R)

On efcountering B, change the state to ge.

S(qj’ B) = (Q& Bv R)

So, tl're_ TM for monus function is shown below:

wher;e‘, '
. Q = {q09 qh q?.’ q3$ q4s
X =1{0,1}
T = {0, 1,B)

qo is the start state
B is the blank character

M=(Q, X,I',9,q.B,F)

Qqs, Q6}

F=6 ,
8 is shown below using the transition table
d 0 1 B
| @ | qi,B.,R "gs, B, R
q qu’R q92, lsR
(¢ }] g3, 1, L q2, 1, R 4, B, L
g | 9u0L g HL 4B R ot R .
Qs | 94 0.L gs B, L 96 0, R
qs qs, Bs R gs, B’ R Q6 Ba R
| *g6

The transition diagram for this can be of the form

B/B,R




346 H Finite Automata and Formal Languages

- The sequence of moves made by the TM for the string 0000100B outputting m-n is shown below:

Bq,0000100B | BBq,000100B | BB0q,00100B } BB00q,0100B |- |
BBOO(\)VqllﬂOB } BB0001q,00B F BB000g;110B | BB00g0110B . | |
B_BOq:f)lOllOB F BBq3oboxloB F Bq;B000110B I BBg,000110B |— [
BBBq\ll'(/)OIIOB | BBBOq,0110B | BBB00q;110B I BBB00Ig:10B |}
BBBO\é/IIqZOB I BBB00Ig:11B .}-B_BBOOq;;lllB | BBBOg0111B  } |

| BBBQY00111B | BBgBOOIIIB | BBBg,00111B | BBBBqOI11B |— |
BBBB\gqllllB I BBBBOIg,11B | BBBBOIlq,1B } BBBBOlllg,B Ff,
BBBB\gllqAB } BBBB01q,1BB | BBBBOq,1BBB F BBBBq,;OBBBB |-f |
BBBq:JIIBOBBBB }-BBBOqGOBBBB | |
“Since g on 0 is not deﬁned the Turing Machine halts. Observe that number of 0’s on the J is

2 which is 4-2. The sequence of moves made by the machine for the string BO100B is shown
below:

(Initial ID) Bq0100B | BBq,100B | BBI1q,00B | BBq;110B |-Bq3BIIOB'|-|

\ 4
BBq110B | BBBqs10B | BBBBqs0B | BBBBBqsB | BBBBBBq,

Since the transition is not defined for the state q¢, the Turing machine halts. Observe that no zeros
.are present on the tape since number of 0’s in first portion is less than the number of 0’s in the
second portion.

Example 9.8: Obtain a TM to accept a string w of a’s and b’s such that Ni(w) is equal to N.,(w) ie.,
the number of a’s and b’s in the string w should be equal.

General Procedure

Let qo be the start state and let the read-write head points to the first symbol of the strmg lo be
scanned which can either be a or b. The general procedure to design a TM will result in three
cases depending on the next input symbol to be scanned namely: v |

On encountering B ‘ g
On encountering a
On encountering b

W



" Turing Machines & 347

.
¢
i
H
{
t

CaSe 1: On encountering B

Change the state from gy to gy, replace B by B and move the pointer towards right and the Turing
madhme halts. The transition for this is shown below:

I :
6(q0¢ B) = (qf’ Bv R)

Case 2:On encountermg a

Geﬁeral procedure: In state qq, if we encounter a, we skip all the subsequent symbols till we
encbunter b. Then come back to the next leftmost symbol and repeat any of the three cases based
on tihe next symbol to be scanned. ,

Det&ul procedure The first a is replach by X and the first b is replaced by Y. For example,
congider the string aaababbb and consider the scenario where first two a’s replaced by X’s and
first two b’s are replaced by Y’s and the read-write head points to the next symbol to be scanned
as shown below:

XX/T\YaYbb

Qo

‘s Instate Go, ON encountering a, change the state to q,, replace a by X and move the pointer
“towards right to get leftmost b. The corresponding transition is

(g 2) = (qu, X; R)

' It is clear from the figure that when we search for leftmost b, we may get a or Y. In such
. cases, the head should move towards right replacing a by a, Y by Y and remaining in
state q,. The corresponding transitions are:

5«11, a) = (ql’ a9 R)
3q:, Y)=(q;, Y,R)

' In state q; on encountering b, replace b by Y, change the state to g, and move the pointer
. towards left to get the next rightmost X. The corresponding transition is:

8(qi,b)=(gz Y, L)

' When searching for X, we may encounter Y’s or a’s. In such cases remain in q; only and
' move the head towards left. The corresponding transitions are:

&qz Y)=(q Y, L)

8(qx, a)=(qx,a, L)



348 M Finite Automata and Formal Languages

Repeat one of the three cases

In state q; on encountermg X change the state to qo, replace X by X and move the pointer
towards right using the transition

&gz, X) = (qo. X, R) ‘ 3

In state qo, on encountering Y it indicates that so far the number of a’s and b’s are equal
and so simply move the pointer towards right using the transmon

8(a0- V)= (@0, Y, B) 0

Case 3: On encountering b

General procedure: In state qo, if we encounter b, we skip all the subsequent symbols till jwe
encounter a. Then come back to the next leftmost symbol and repeat any of the three cases based
on the next symbol to be scanned. .

Detail procedure: The first b is replaced by X and the first a is replaced by Y. For example,
consider the string bbbabaaa and consider the scenario where first two b’s replaced by X’s and
first two a’s are replaced by Y’s and tl\ae read-write head pojats to thg next symbol to be scanged
as Shown below: T et ST

XX*YbYaa

%o
In state go, on encounter change the state to qs, replace b by X and move the pomter
towards right to get leftmost a. The corresponding transition is

5(‘10, b) = (q?n X,R)

It is clear from the figure that when we search for leftmost a, we may get bor Y. In such

cases, the head should move towards right replacing b by b, Y by Y and remammg in

state q3. The correspondmg transitions are: . ' g
8qs, b) =(qs b, R) |
8(‘13» Y) = (‘-h, Ya R)

On enéoumering a, replace a by Y, change the state to q4 and move the pointer towards
left to get the next rightmost X. The corresponding transition is:

8(qs, ) =(qs, Y, L)

When searching for X, we may encounter Y’s or b’s. In such cases remain in q4 only and
move the head towards left. The corresponding transitions are:




lw
iv

i

wh?fe

Turing Machines B 349

8((14, Y) = (Q4, Y1 L)
8(q4, b) = (g, b, L)

In state g4 on encountering X change the state to qo, replace X by X and move the pointer
towards right using the transition

8(‘14, X) = (QO» X’ R)

In state qo, on encountering Y it indicates that so far the number of a’s and b’s are equal
and so simply move the pointer towards right using the transition

8(go, Y) = (q0, Y, R)

Repeat one of the three cases

So, ithe TM to accept strings of a’s and b’s such that number of a’s is equal to number of b’s is

M= (Q, z ’ r ,8, qo.‘B, F)

Q = {go, 91, 92, 93, 94, G}

Z ={a, b} .

I'={a,b,X,Y,B}

qo is the start state

B is the blank character

F={q}

4 is shown below using the transition table

r
| 8 a b X Y B
—> Jo thsR 93, X,R 9o, Y,R qr B,R

4 |9uaR g Y, L q, Y, R
q2 | g2, a, L g X,R q2 Y,L
g lqs Y.L g3 bR _ q, Y,R
gs | - Ja, b, L Jo, X, R 44, Y, L
*qs ‘ Final state

Theﬁ sequence of moves made by the Turing Machine for the string bbabaa is shown below:

To ;ilccept the string: The sequence of moves or computations (IDs) for the string bbabaa made
by the Turing machine are shown below:



350 & Finite Automata and Formal Languages

(Initial ID) qobbabaa l— Xqsbabaa |- Xbqgsabaa I- XqsbYbaa J— q4XbYbaa I— |

\' 2 _
XqobYbaa | XXgq:Ybaa |XXYqsbaa |XXYbga |XXYqbYa |

A4 .
XXqYbYa |XqXYbYa |XXqYbYa |XXYqbYa |XXYXqsYa |

A\ :
XXYXYqa | XXYXqYY FXXYqXYY FXXYXqYY }XXYXYqY |
\

XXYXYYqB (Final ID)
Similarly the sequence of moves for the string bbaaab is shown below:

(Initial ID) gobbaaab - |} Xqsbaaab | Xbgsaaab | XqebYaab |} q.XbYaab |

A\ ,
XqobYaab [- XXq;Yaab Ir-XXYq;aab ]—XXYaq;ab‘ |- ....... and so on.

Example 9.9: Obtam a Turing machine to accept a palindrome consisting of a'sand b’s ot any
fength. ;

Let us assume that the first symbol on the tape is blank character B and is followed by the string
which in turn ends with blank character B. Now, we have to design a Turing machine which
accepts the string, provided the string is a palindrome. For the string to be a palindrome, the first
and the last character should be same. The second character and last but one character should be
same and so on. The procedure to accept only string of palindromes is shown below. Let qo bq the
start state of Turing machine.

Step1: Move the read-write head to point to the first character of the string. The transition for thls
can be of the form

8(qe, B) = (q:, B.R)

Step2 In state q,, if the first character is a, replace it by B and change the state to q; and move
the pointer towards right. The transition for this can be of the form

S(Qh a)=(q, B,R)

Now, we move the read-write head to point to the last symbol of the string and the last symbol
“should be a. The symbols scanned during this process are a’s, b’s and B. Replace a by a, b by b
and move the pointer towards nght The transitions defined for this can be of the form

8(qz, a) =(q2, a, R)
3(q2, b) =(q2, b, R)

But, once the symbol B is encountered, change the state to g3, replace B by B and movd the
pointer towards left. The transition defined for this can be of the form ‘

8(q2 B) =(qs, B, L) e

H
N
i

i
|



: » | Turing Machines & 351
In st%lte q, the read-write head points to the last character of the string. If the last character is a,
then 'change the state to g4, replace a by B and move the pointer towards left. The transitions
definted for this can be of the form ~
: ’ 8(qs a) =(qs, B.L) .
o 7

At tliis point, we know that the first character is @ and last character is also a. Now, reset the read-
write: head to point to the first non blank character as shown in step5.

P
1

In sthte Qs if the last character is B(blank character), it means that the given string is an odd
palindrome. So, replace B by B change the state to q; and move the pointer towards right. The
transition for this can be of the form '

8(q3, B)=(q.. B.,R)

Step§ 3: If the first character is the syxﬁbol b, replace it by B and change the state from q, to gs and
move the pointer towards right. The transition for this can be of the form

8(ql’ b) = (95, Bv R)

: Now;,‘we move the read-write head to point to the last symbol of the string and the last symbol
should be b. The symbols scanned during this process are a’s, b’s and B. Replace a by a, bbyb
and move the pointer towards right. The transitions defined for this can be of the form

3(qs, a) =(gs, a,R)
8((15, b) = (qS’ b, R)

But,%oncé the symbol B is encountered, change the state to qe, replace B by B and move the
pointer towards left. The transition defined for this can be of the form

d(gs, B) = (%,VB, L)

In stiate Qs, the read-write head points to the last character of the string. If the last character is b,
then |change the state to ge, replace b by B and move the pointer towards left. The transitions
defined for this can be of the form

i
{

8(qs, b) =(q4 B, L)

At thls point, we know that the first character is b and last character is also b. Now, reset the read-
writ¢ head to point to the first non blank character as shown in step5.

In St%lte Qe, If the last character is B(blank character), it means that the given string is an odd
palindrome. So, replace B by B, change the state to q; and move the pointer towards right. The
trangition for this can be of the form :

8(‘](» B) = (Q7, B’ R)

Ste[i 4: In state q), if the first symbol is blank character (B), the given string is even palindrome
and so change the state to gy, replace B by B and move the read-write head towards right. The
transition for this can be of the form



352 E Finite Automata and Formal Languages

S(QI» B) = (Q% B,, R) 3

Step 5: Reset the read-write head to point to the first non blank character. This can be done as
shown below. If the first symbol of the string is a, step 2 is performed and if the first symbol of
 the string is b, step 3 is performed. After completion of step 2 or step 3, it is clear that the first
symbol and the last symbol match and the machine is currently in state q;. Now, we have toireset
the read-write head to point to the first nonblank character in the string by repeatedly movmg the
head towards left and remain in state q,. During this process, the symbols encountered mayibe a
or b or B (blank character). Replace a by a, b by b and move the pointer towards leﬂ.’ The
transitions defined for this can be of the form : o

8(‘]4, a) = (q47 a, L)
8((14, b) (q49 b L)

But, if the symbol B is encountered, change the state to q;, replace B by B and move the pdmter
towards right. The transition defined for this can be of the form

S(Q‘u B) = (qh Bo R) ' ‘
After resetting the read-write head to the first non-blank character, repeat through step1. 3 -
So, the TM to accept 'strings of palindromes over {a,b} is given by ‘

M=(Qs E, Fvaqu’BvF)

where
Q= {qo, Q1 92, 43, 44 Gs- G- G} ' :
> = {a, b} | .
I' = {a,b, B} , ':
o is the start state
B is the blank character
F={q}
d is shown below using the transition table
) a b B :
—> Qo - - q1, B,R
qi 92 B5 R gs, B9 R q7, Bs R
92 | 92 a, R 92, b’ R g3, B,L
Q|94 B, L - g, B.R
G4 ds, 4, | 4, b, L i, B,' R .
g |9s»aR |g,b,R |geB,L
9 - qs,B,L | g, B,R .
*q7 - - -




! | _ Turing Machines & 353

The tiransition diagram to accept palindromes over {a, b} is given by

B/B,R

The x;e,ader can trace the moves made by the machine for the strings abba, aba and aaba and is left
as an| exerClse

ExaerIe 9.10: Obtain a TM to accept the language L = {ww® | w € (a+b)'}

Notet ww" is nothing but a palindrome but of even length. So, it is same as the previous problem
except that from states q; and q¢ on B no transitions are defined as-shown below:

1§
d a b B
Qo | . - - q.. B, R
qu 92, Ba R qs» B’ R q7, B’ R
Q2 {g»a,R |q,bR [g,B,L
¢ |94 B, L -
Js | 94, Q, L g4, b, L J1, B,R
i ds ) gs, 4, R qs, b’ R e, Bv L
b [ - 19+B,L
| 47 - - -

9.7 Transducers

A tra";{sducer accepts some input and transform that input into the desired output. In this sense, the
TM ¢an be called as a transducer. The primary purpose of any computer is to accept some input
and transform into the desired output. Using Turing machines, an abstract model of a digital
computer can be obtained. The input for Turing machine will be the non-blank symbols on the
tape and after processing, the output will be the symbols -on the tape So, the transducer for a
Turntg machine is a function fdefined by » :



354 B Finite Automata and Formal Languages
fw)=w!
where w is the input before computation and w' is the output after computation such that
QoW I-* qw' forqce F |

Definition: Let M = (Q, X, 8, qo, B, F) be a Turing machine. The functlon fis Turing computable
(also called computable) if and only if

qw |+ gew' forqre Fandwe r

The arithmetic operations such as addition, subtraction etc. including the common mathematical
functions are Turing computable. Some of the operations covered are:

* Addition
Concatenation of two strings
= Arithmetic comparison

Example 9.11: Let x and y are two positive integers. Obtain a Turing machine to performx +y

Let us see how to represent positive integers. We know that binary digits are 0 and 1. On similar
lines, we can have a unary number which is made up of only one digit. Let us assume that 1 is the
unary digit. So, a number is made up of only 1’s. Let x and y are two unary numbers over {1}*.
Assume that both the unary integers x and y are stored on the tape one after the other separated by
a 0. For example, if x is 1111 and y is 111111 then store x on the tape, end with a 0 and then store
integer y as shown below

11110111111
x 0 vy

If this is the input to the transducer, the output should be of the form

1111 1111110
—— )

In general the moves made by the Turing machine should be of the form ’

qox0Oy l-* qsxyO where q is the final state ‘]

It is clear from the problem definition that to solve this problem the following steps are

performed:

General Procedure !
. : o

Keep updating the pointer till a 0 is encountered. Replace the symbol 0 by 1 and move till the last

1 is reached. Replace last 1 by 0 and reset the read-write head to point the first 1 on the tape. |



1

_ Turing Machines B 355
Let go be the start state and assume that the integers x and y are separated by O and enclosed

betv?e,en two B’s as shown below
5 BxOyB

and }the read-write head points to the first 1 in the integer x. The TM can be constructed as shown
belaw: ‘ : ‘

Kei updating read-write head till a O is encountered. While scanning for a 0, we encounter 1’s in
x. So, replace 1 by 1 and move the read-write head towards right and stay in the state go. The
transition for this can be of the form I

S(Clo, l) = (qO’ l sR)

On ;encbuntering a 0, change the state to qy, replace 0 by 1 and move the pointer towards right.
Thej transition for this can be of the form

8(qo,0)=(q1. 1, R)

No{\r, the read-write head points to the first 1 of integer y. Now, move the read-write .head to
point to the last 1 of integer y. To achieve this, replace 1 by 1, move the read-write head towards
right and stay in g, only. The transition for this can be of the form

. S(er 1) = (qls l’ R)
On iencountering B, change the state to q,, replace B by B and move the pointer towards left. The
transition for this can be of the form '

8((11, B) = (qu Bv L)

NO\jV, the read-write head points to the last 1 of integer y. wa; change that 1 to 0, change the
state to q; and move the head towards left. The transition for this can be of the form

8(q29 l) = (CB, 09 L)
xy0
on the tape. But, we should move the pointer to the first 1 of the integer x. To achieve this, scan

each symbol, replace 1 by 1, move the pointer towards left and remain in state qs. The transition
for this can be of the form :

Now, we have the pattern

8(‘1:% l) = (q3s 1$ L)

Onke the symbol B is encountered, replace B by B, change the state to q4 and move the read-write
towards right. The transition for this is .

5((]37 B) = (Q4, Ba R)

So, the TM to achieve x +y is given by



356 & Finite Automata and Formal Languages '

M=(Q Z,T,8,q,B,F. |
where . .

Q= {qo. q1» 92, g3, q4} T ' RS
2 ={l} ‘
I'={1,0,B}
o is the start state
B is blank character ‘ :
F={q} i
d is shown below using the transition table : :

] - . T : : '
1 0 B -
—>1qo | 9lR gqn 1,R -
Q@ |q. LR - q,B,L «
9% |9:.0L - -
qs 9, l’L ‘ T 44, B,R .i .
¥4 - - - |

It is left to the reader to take an example and show the sequence of moves made by the TM.;fo
looking at the transitional table we can easily write the transition diagram which is also left to;the
reader as an exercise. ‘

Example 9.12: Given a string w, design a TM that generates the string ww where w € a*.

Let qo be the start state and assume that the string w is enclosed between infinite number of B’s
and the read/write head points to the first a of the string w as shown below:’ o

9o
...... BBBBB aaaaaaa BBBBB..... [
| , i

w

The general procedure to concatenate the string w with itself is shown below:

Replace each symbol in w with x.

- Find the rightmost x .
Replace rightmost x by the symbol a. N
Move 1o the right of rightmost a and replace it by a.
Find the rightmost x P ‘
Repeat-through step 3 till we find no more x’s

PN =

Let us obtain the transitions for each of the steps shown above:




Turing Machines B 357

Stf}l Replace each symbol in w with x. This can be easily done by replacing each a by the
symbol X and then move the read/write head towards right till we get the symbol ‘B’. The
transitions defined to achieve this are:

!

5(‘10#‘) = (qO&XaR)

The contents of the tape and position of read/write head after applying these transitions will be

B %

i l
H
i

...... BBBBB XXXXXXX BBBBB.....
\_Y__J

!
4
!

wl

Steb 2: Find the rightmost x. This is achieved only after all a’s are replaced by X’s as shown in
figure above. In state go, once we encounter the symbol ‘B’ as the input, change the state to q;, -
replace B by B and move the pointer towards left. The corresponding transition will be

S(QO’B) = (ql’B ’L)

'No&, the pointer points to the rightmost X as shown in the figure below:

qi

|

...... BBBBB XXXXXXX BBBBB.....

wl

Step 3: Replace rightmost x by the symbol a. Since the pointer points to the rightmost x,
replace this X by a, change the state to q; and move the pointer towards right. The transition for
this will be

| S(QI»X) = (QZ,a,R)

The contents of the tape and position of read/write head after applying these transitfons will be
. qz - N

!

s BBBBB XXXXXXaBBBBB.....
\'_Y_J

wl



358 K Finite Automata and Formal Languages

Step 4: Move to the right of rightmost ¢ and replace it by a. This can be achieved by
repeatedly replacmg they symbol a by a, remain in the same state g, and move the pointer
towards right using the transition

8(qz2) = (q2a,R)

and when the symbol B is encountered, change the state to qy, replace B by a and move the
pointer towards left using the transition
8(quB) = (QI,a,L)

The contents of the tape and position of read/write head after applying these transitions will be

1 , |
...... BBBBB XXXXXXa aBBBB.... |

wl

Siep 5: Find the rightmost x. Now, to get the rightmost X, as we encounter a in the i !
remain state q,, replace a by @ and move the pointer towards left. The transition for this will b

5((11 ,a) = ((h ’aaL)

The contents of the tape and position of read/write head after applymg these transmons will be
qQ

T BBBBB XXXXXXa aBBBB......

wl

i
Step 6: Repeating the steps through step 3, there will not be any more X’s and the left of the

leftmost 1 will be B. Once this B is encountered, change the state to qs; which is the final state,
replace B by B and move the pointer towards right. The transition will be

5(q1,B) =(q3,B.R)

The final contents of the tape and posmon of read/write head is shown below:

CER i

...... BBBBB aaaaaaaaaaaaaa BBBB.....
—

-W‘

So, given the string w, the TM to obtain the string ww is given by
M=Q 2,T,5,q,B,F



Turing Machines & 359

where :
- Q=1{90.91,9 9 }

- Z={a}

- I ={a,X,B}

. Qo is the start state

. B is blank character

: F = {qs}

. & is shown below using the transition table

3 C .
. a X B

9 Jo (qO’X:R) - (QthL)

qQi (ql’a’L) (q27a3R) (q3vBsR)

: 92| (922,R) - (qu.a,L)

i *q3 - - -

Itis keft to the reader to take an example and show the sequence of moves made by the TM. By
lookﬁlg at the transitional table we can easnly wnte the transition diagram which is also left to the
readér as an exercise.

Example 9.13: Construct a TM that stays in the final state q; whenever x > y and non-final state g,
whenever x < y where x and y are positive integers represented in unary notation.

Let qo be the start state and assume the two unary integers x and y are separated by #. Also,
assumne the string x#y is enclosed between B’s as shown below:

Bx#yB
The mitial ID will be of the form
f Bqox#yB

with Fhe read/write head pointing to the first leftmost digit of x and the final confi guration will be

either
. Bqgx#yB whenever x 2 y

or .

Bq.x#yB whenever x <y

In otiler words, o
5 Bqox#yB P Bqex#yB whenever x 2 y
Bqox#yB F* Bq.x#yB whenever x <y

Note?:'While designing the TM for the language L = a"b" in example 9.2, each leftmost symbol a
was matched with leftmost symbol b. On similar lines we can solve this problem also.”

General procedure: Let g, be the start state and let the read-write head points to the first digit of
integer x. The general procedure to design TM for this case is shown below:



360 E Finite Automata and Formal Languages

1. Replace the left most digit of integer x by X and then move the read/write head till we
get the leftmost digit of integer y.
2. Replace it by X and move towards left till the leftmost 1 of integer x is obtained.
3. Repeat through step 1 till one of the condition is satisfied:
a. Nomore I’s in integer x and y.
b. More I’s in integer x which results in no 1’s in integer y.
¢. More I's in integer y which results in no 1’s in integer x.

So, final contents of the tape will have one of

Lo XXXXX#XXXXXB whenever x = y with output q;.

2. XXXXX11#XXXXXB whenever x > y with output g.

3. XXXXX#XXXXX11B whenever x < y with output q,. '
If the condition shown in step 3.a or 3.b is encountered, change the state to qg; Otherwise change
the state to g,. Now, consider the situation g

XX11#XX11B
Go ) ! .

where first two 1’s of integer x are replaced by X’s and first two 1’s of integer y are also re;il;iced
by X’s. In this situation, the read-write head points to the left most 1 of integer x and the machme
is in state go. With this as the configuration, now let us design the TM.

Step 1: In state qg, when the digit 1 is encountered, change the state to q;, replace 1 by X and
move pointer towards right using the transition

8(qor1) = (qu.X.R)

But, in state qo, if the symbol # is encountered, it means that there are no 1’s in integer x and |
change the state to qs using the transition "

&(qo.#)-= (g5, #.R)

Step 2: In state ql, the pointer should move towards right till # is encountered and then ch{mge
the state to q> which can be done using the transitions

5(q1,l) =(q,,LLR)
8(ql’#) = (ql’#vR)

Step 3: In state 2. TM may encounter X’s when searching for leftmost 1 in y. If so, the|TM
should leplaw X by X and move the pointer towards right using




Turing Machines & 361

8(92,X) = (q2.X,R)

Once the machine encounters 1, it should change the state to qs, replace 1 by X and move the
pointer towards left using

&(qg2,1) = (q3,X,L)

1
i

But, if the symbol B is encountered it means that x >y and the machine shouid enter into final
state q,, using the transition

S(quB) = (Q&BL)
and ﬁnally from g¢ we can enter into state qy.

‘Step 4: In state qs, every X should be replaced by X and the pointer should be moved towards left -
usmg the transition :

S(QLX) = (QJ,X,L)

But, once # is encountered, move the pointer towards left, change the state to q4 to search for
leftmost 1 in x using the transition

8(%,#) = (qu#,L) .

Step 5: In state g, replace 1 by 1 and move towards left using '

8(q4s l) = ((]«h 1 ’L)

But, once X is encountered, change the state to qg, replace X by X and move the pointer towards
right 'u_sing
5(Q4,X) (qO’X R)

Step | 6 Whenever the machine is in gs, it means that there are no 1’s in . If there are no 1’s in y,
then y will have only X’s followed by B in that case the machine should enter into state gs. The
transmons will be
' -8(g5,X) = (g5, X,;R)

8(gs.B) = (gs.B.L)

and ffom state g¢ we can reach the final state q;. But, in state gs, if 1’s are encountered, it means
that X < y and the machine goes to state q; from which non-final state qq is reached using the
transn;ion

&(gs,1) = (q7,1,L)

Step ' 7 From state qe. the machine should enter into final state qr and the pointer should point
first dlglt of x which can be done using



e ebwe

R

362 H Finite Automata and Formal Languages

So, the final TM is given by

where

8(q6’ 1) = (Q6, 1 7L)
5(‘]6~X) =
8((16,#) = (Q(),#»L)

(Q6,X,L)

8((16»13) = (qva R)

Step 8: From state g5, the machine should enter into final state q, and the pointer should: pomt
first digit of x which can be done using

3(q7.X) =
(g ¥ =

(q7 9X9L)
(q7v#9L)

8(q7vB) = (QnaB»R)

M=(@Q, Z,T,8,q.B,F)

Q = {qu qu qu q3s q4s QS, q6v q7’ Qm qf}

T = {1#}

I' ={1, X, #, B}
. (o is the start state
B is blank character

F= {Qf’ Qn}
d is shown below using the transition table
5 T
1 # X B
—>q | @XR)|(@#R) | - -
4 | @QiL,LR) | (@#R)
q: | (qs,X.L) - (9X.R) | (9s,B.L)
gz - (Q4~#,L) (q.?,X»L) -
qs | (qs1,L) - (90, X,R) -
gs | (qs.1,L) - (95-X,R) | (g6.B.L)
96 (qG’IvL)' : (q6$#’L) (&)9X9L) (qvavR)
q - (qz:#.1) | (@2,X,L) | (gnB,R)
*q, - N _ -
*qf - _ - -

Example 9.14: What language is accepted by the machine M = (Q, X, I" §, qo, B, F) where Q F { 90,

qi, 92 G2}, £ = {a, b}, F {a, b, B}, qo is start state, B is blank character, q; =

as follows:

8((10,3) = (ql’asR)
8(q0’b) = (Qzab‘R)

d(q1,b)

= (q1vva)

8(‘11 vB) = (q:’wB’R)

{qs} where § is defined




Turing Machines 2 363

; 8(q2b) = (q2,b.R)
! 8(qz2.a) = (g3.a,R)

Note It is clear from the TM that the movement of the read/write pointer is only towards nght
and it can be compared with the FA. So, the equivalent FA for these transitions can be written as

It 1$ clear from the graph that to reach the final state the FA can take only two paths yielding the
language containing either bb*a or ab* (Leaving B as it is not the input symbol) which can be
deﬁned as

L = {bb*a + ab*}

wh’ch is the string consisting of at least one b followed by one a or a single a followed by zero or
more b’s.

98 Church Turing Hypothesis (Church’s/Church-Turing thesis)

Church’s thesis: Various formal models of computations such as Recursive functions and Post
sys}ems were established by three prominent persons A.Church, S.C Kleene and E.Post.

; A function is called primitive recursive if and only if it can be constructed from the basic
functions by successive composition and primitive recursion.

, A Post system is similar to unrestricted grammar consisting of an alphabet and some
production rules by which successive strings can be derived.

| In addition to recursive functions and Post systems, many other formal computations
models have been proposed. On examination it was found that though the computational models
looked quite different, they expressed the same thing. This observation was formalized in
Church’s thesis which is stated as follows: :
( Any “effective computation” or “any algorithmic” procedure that can be carned out by
a Human being or a team of human beings or a computer, can be carried out by some Turing
marhme In other words, there is an effective procedure to solve a decision problem.P if and only
if there is a Turing machine that answers yes on inputs W € P and no forw ¢ P.

This theory maintains that all the models of computations those are proposed and yet to
be |proposed are equnvalent in their power to recognize languages or compute functions. This
thesis predicts that it is unable to construct models of computation more powerful than the
existing ones.

The above statement is known as “Church’s 1hes1s named after the logician A.Church.
Since the Church’s thesis is closely related to Turing’s thesis which states that we can not go
beyond Turing machines or their equivalent, it is also called Church-Turing thesis.



364 K Finite Automaté and Formal Languages

Since there is no precise definition for “effective computation” or there is no precise
definition for “algorithmic procedure”, Church’s thesis is not a mathematically precise statement.
So, this statement is not proved at the same time it has been not been disproved. Even though it is
simply stated and not proved, now majority of scientists have accumulated enough evidence over
the years that has caused Church’s thesis to be generally accepted.




Turing Machines & 365

Exercises:
Explain the Turing machine model
Define Turing machine
What is an ID with respect to TM?
Define move of a TM
What language is accepted by TM?
What is a recursively enumerable language?
Obtain a Turing machine to accept the language L = {0"" | n> 1}
Obtain a Turing machine to accept the language L(M) = {0"1"2"|n 2> 1}
Obtain a TM to accept the language L = {w | w € (0+1)*} containing the sub string 001
0. Obtain a Turing machine to accept the language containing smngs of 0’s and 1’s ending
with 011
1. Obtain a Turing machine to accept the language L = {w | wisevenand X = {a b} }
12. Obtain a Turing machine to accept a palindrome consisting of a’s and b’s of any length.
13. On what basis we say that TM is a transducer?
14. What is Turing computable?
~15. Let x and y are two positive integers. Obtain a Turing machine to perform X+y
!6. Given a string w, design a TM that generates the string ww where w € a
17. Construct a TM that stays in the final state q; whenever x 2 y and non-final state g,
.. whenever x <'y where x and y are positive integers represented in unary notation
18. What language is accepted by the machine M = (Q, %, 8, qo, B, F) where Q = { qo, q1, G2,
4 q}, Z={a, b}, " ={a, b, B}, qo s start state B is blank character, g; = {q3} where d is
. defined as follows:
3(qo,a) = (q1,a,R)
3(qo,b) = (q2,b.R)
3(q,b) = (a1,b,R)
&qi,B) =(g3.B.R)
8(qab) = (q2,b.R)
8(qa) = (q3,a,R)
19. How to achieve complex tasks using TM?
20. Let x and y are two positive integers represented using unary notation. Design a TM that
' computes the function
fx,yy=x+y ifx>y
; - f(X,y) = xx ifx<y
21. What are the various variations of TM?
22. Define the following
' Turing machine with stay-option
Turing machine with multiple tracks
Turing machine with semi-infinite tape
Off-line Turing machine
Muiti-tape Turing machine
Linear bounded Automaton
23. What is a multi-tape Turing machine? Show how it can be simulated using single tape
Turing machine.

Rl e



366 H Finite Automata and Formal Languages

Summary

YVVVVYVVVY VYV

Now!! We know

Concept of Turing Machine model

Definition of Turing machine (Standard Turing machine)
Definition of Instantaneous description w.r.t TM

Moves of TM

Languages accepted by TM

Recursively enumerable language

Constructing TMs for varieties of languages

TM as transducer

Solution to more than 10 problems of various nature.



Extensions of Turing Machines

What we will know after reading this chapter?

» Multi-tape Turing machine

» Equivalence of single tape and multi-tape TM’s
> Non-deterministic Turing Machine

» Turing machine with stay-option v

So far in the previous sections, we have discussed the concepts of Standard Turing Machines.
Now’, we shall concentrate on the variations or extensions of the Standard Turing machine and
using simulators we show that the extensions of Turing machines in fact are equivalent to
Standard Turing machines. Instead of providing the complete simulation, we shall provide only
broad outline to show that the machines are equivalent. We can have so many variations of
Standard Turing machines. With minor modification we can have the following Turing machines:
®  Multi-tape Turing Machine
% Non-deterministic Turing Machine
This section discusses these two variations of TM. Other variations by imposing certain
restriictions (restricted TMs) are discussed in the chapter 12.

101 Multi-tape Turing Machines

A m+lti-tape Turing Machine is nothing but a standard aning Machine with more number of
tapeleEach tape is controlled independently with independent read-write head. The pictorial
representation of multi-tape Turing machine is shown in figure below:

l | am

;'Tape 1

Control ,
unit

Tol1]]

Y]

Tape 2




368 E Finite Automata and Formal Languages

The various components of multi-tape Turing Machme are:
a. " Finite control )
b.  Each tape having its own symbols and read/write head.

Each tape is divided into cells which can hold any symbol from the given alphabet. To start with
the TM should be in start state qo. If the read/write head pointing to tape 1 moves towards right,
the read/write head pointing to tape 2 and tape 3 may move towards right or left depending on the
transition. The formal definition of Multi-tape Turing machine can be defined as follows.

Definition: The Multi-tape Turing Machine is an n-tape machine

M=(Q9 Za F’S’qO’B’F)
where

Q is set of finite states
2 is set of input alphabets
I" is set of tape symbols

d is transition function from Q x ' to Q x T"x {LR}"
9o is the start state :

B is a special symbol indicating blank character

F ¢ Q s set of final states

The move of the multi-tape TM depends on the current state and the scanned symbol by each of
the tape heads. For example, if number of tapes in TM is 3 as shown in the figure and if there is a
transition ‘

d(q,a,b,c)=(p.x,y,z,L,R,S)

where g is the current state. The transition can be interpreted as follows. The TM in state.q will be
moved to state p only when the first read/write head points to a, the second read-write head points
to b and third read/write head points to ¢ and the read/write head will be moved to left in the first
- case and right in the second case. But, the read/write head with respect to third tape will npt be
altered. At the same time, the symbols a, b and ¢ will be replaced by x, y and z. It can be easily
shown that the n-tape TM in fact is equwalent to the smgle tape Standard Turing Machrhe as
shown below. :

102 Equivalence of single tape and multi-tape TM’s ) 4
Theorem: Every language accepted by a multi-tape TM is recursively enumerable.

Note: The theorem clearly indicates that every language accepted by a multi-tape TM is also
accepted by a standard TM.

Proof: This can be shown by simulation. For example, consider a TM with two tapes as shown
below:



Turing Machines &2 369

- a :
u
: ’__q_—:& .
¢ W Multi-tape
d X .
e
f
z

~ The hbove 2-tape TM can be simulated using single tape TM which has four tracks as shown in
figure below: '

i

Single tape Multiple tracks

N |x|glele
—~lololo|o|o

-0 oo los
QIQ|o|I=iC|e

The first and third tracks consist of symbols from first and second tape respectively. The second
and fourth track consists of the positions of the read/write head with respect to first and second
tape! respectively. The value 1 indicates the position of the read/write head. It is clear from the
above figure that, the machine in state q and when the first read/write head points to the symbol ¢,
the second read/write head points to the symbol z, then the machine enters into state p, if and only
if this transition is defined for TM with multi-tapes. So, whatever transitions have been applied
for multi-tape TM, if we apply the same transitions for the new machine that we have constructed,
then the two machines are equivalent. -

. 10.3: Nondeterministic Turing Machines

Thegdifference between nondeterministic TM and deterministic TM lies only in the definition of
8. The formal definition of nondeterministic TM is shown below:-

Definition: The nondeterministic Turing Machine M=(Q, Z, ', 8, qo, B, F) where
© Qis set of finite states .
T is set of input alphabets
I" is set of tape symbols

§ is transition function from Q x I" to

qo is the start state
B is a special symbol indicating blank character

F c Qs set of final states.

2QX rx{L.r}

It is clear from the definition of & that for each state g and tape symbol X, 8(q,X) is a set of triples
. {(quXIaD)v (QZ’XZ,D), (Q3,X3,D), """"" > (Qiﬁxi,D)}



370 M Finite Automata and Formal Languages

where i is a finite integer and D is the direction with ‘L’ indicating left or ‘R’ indicating nght
The machine can choose any of the triples as the next move. The language accepted by T is
defined as follows.

Definition: Let M =(Q, 2, T', 3, qo, B, F) be a nondeterministic TM. The language L(M)
- accepted by M is defined as

LM)= {w|q0w|-* oypa; wherew e ', p € Fand ay, o € I*}

The language is thus a set of all those words w in X" which causes M to move from start state
Qo to the final state p. :

A nondetermmlstlc TM may have many moves that does not lead to a final state. But, we are
interested in only those moves that leads to the final states. The nondeterministic TM in fact is no
more powerful than the deterministic TM. Any language accepted by nondeterministic TM cqn be
accepted by deterministic and both are equivalent. We can simulate a deterministic TM from a
nondeterministic TM as shown below:

Theorem: For every nondetermmxstlc TM (NTM) there exists a deterministic TM (DTM) such
that LINTM) = L(DTM)

Proof : Given a string w, NTM starts at the initial configuration(initial ID) and goes through a
sequence of configurations(IDs) until it reaches one of the conditions: :
= Final state is reached and the machine halts
- The transition is not defined and the machine halts
* Goes into an infinite loop .

To go to- the next configuration(ID), the NTM has to choose from a finite set of
configurations(IDs). All these configurations(IDs) which can be obtained by NTM for a given
string w can be represented by a tree. The way NTM is simulated by DTM is shown using the
figure shown below: .

Finite
‘Control

- . Note: Each ID is associated witf\ a
queve [ID1 [D2 [ID3 [ [..... | state and the next input symbol |

Tape | |




